scholarly journals Numerical Modelling of the Three-Dimensional Slamming Problem

Author(s):  
Matthieu Tourbier ◽  
Bernard Peseux ◽  
Bundi Donguy ◽  
Laurent Gornet

This paper deals with the slamming phenomenon for deformable structures. In a first part, a three-dimensional hydrodynamic problem is solved numerically with the Finite Element Method. The results for a rigid body are successfully compared to the analytical solutions. After the numerical analysis, an experimental investigation is presented. It consists in series of free fall drop-tests of rigid, deformable cones shaped models with different deadrise angle and thickness. Distribution of the pressure and its evolution are analyzed. Numerical and experimental results are compared and present good agreement.

1980 ◽  
Vol 15 (3) ◽  
pp. 117-126 ◽  
Author(s):  
V Ramamurti ◽  
S Sreenivasamurthy

In this paper the finite element method has been used to determine the stresses and deformations of pre-twisted and tapered blades. Three-dimensional, twenty-noded isoparametric elements have been used for the analysis. Extensive analysis has been done for various pre-twist angles, skew angles, breadth to length ratios, and breadth to thickness ratios of the blades. Experiments were carried out to determine the stresses for the verification of the numerical results and they were found to be in good agreement.


Author(s):  
C T F Ross ◽  
A P F Little ◽  
L Chasapides ◽  
J Banks ◽  
D Attanasio

The paper presents a theoretical and an experimental investigation into the free vibration of three ring-stiffened prolate domes in air and under external water pressure. The theoretical investigation was via the finite element method where a solid fluid mesh was used to model the water surrounding each dome. Good agreement was found between theory and experiment. Both the theory and the experiment found that, as the external water pressure was increased, the resonant frequencies decreased.


2014 ◽  
Vol 626 ◽  
pp. 334-339
Author(s):  
Te Fu Huang ◽  
Hsin Yi Hsien ◽  
Yan Jia Chen

The friction holding effect and the friction reducing effect occurring during Hydraulic Deep Drawing and the pre-bulging resulting in more plastic deformation on products are applied on sheet hydro-forming. For Hydraulic Deep Drawing of a square cup, the thickness distribution and the relation between the height and the pressure of pre-bulging are simulated with SPCC steels as the specimen by the finite element method. An experimental apparatus of sheet hydro-forming has been constructed to carry out the hydraulic deep drawing experiments of square cups. Experimental thickness distribution and punch load are compared with simulation results. Good agreement was found. The flow patterns of the circular and square blanks with the condition of being firmly pressed against the punch observed from the experiments are in agreement with the predicted results.Keywords:Hydraulic Deep Drawing, sheet hydro-forming, finite element method


Author(s):  
C T F Ross ◽  
W D Richards

This paper describes a theoretical and an experimental investigation into the vibration of three ring-stiffened thin-walled conical shells, under external water pressure. The theoretical investigation was via the finite element method for both the shell structure and the surrounding water. Various fluid meshes were chosen, and a relatively simple one showed good agreement between experiment and theory.


1998 ◽  
Vol 22 (4A) ◽  
pp. 311-324
Author(s):  
Jin Hu ◽  
H. J Leutheusser

This paper deals with an analytical and experimental investigation of laminar sheet flow between a smooth and a rough wall. As such, the material presented may be of special interest within the context of hydrodynamic lubrication. The dynamic and kinematic properties of the flow are described by a newly conceived “reduced Reynolds number”, and the two length parameters of, respectively, “relative roughness” and “steepness of roughness”. The equations of motion are solved by the finite element method for the case of sinusoidal roughness, and corresponding measurements are obtained in a specially designed two-dimensional wind-tunnel. Good agreement is found to exist between numerical and experimental results. The pattern of streamlines and velocity profiles reflect the influence of the three similitude parameters and thereby underline the important role played by surface texture in laminar sheet flow.


2020 ◽  
Vol 46 (3) ◽  
pp. 175-181
Author(s):  
Marcelo Bighetti Toniollo ◽  
Mikaelly dos Santos Sá ◽  
Fernanda Pereira Silva ◽  
Giselle Rodrigues Reis ◽  
Ana Paula Macedo ◽  
...  

Rehabilitation with implant prostheses in posterior areas requires the maximum number of possible implants due to the greater masticatory load of the region. However, the necessary minimum requirements are not always present in full. This project analyzed the minimum principal stresses (TMiP, representative of the compressive stress) to the friable structures, specifically the vestibular face of the cortical bone and the vestibular and internal/lingual face of the medullary bone. The experimental groups were as follows: the regular splinted group (GR), with a conventional infrastructure on 3 regular-length Morse taper implants (4 × 11 mm); and the regular pontic group (GP), with a pontic infrastructure on 2 regular-length Morse taper implants (4 × 11 mm). The results showed that the TMiP of the cortical and medullary bones were greater for the GP in regions surrounding the implants (especially in the cervical and apical areas of the same region) but they did not reach bone damage levels, at least under the loads applied in this study. It was concluded that greater stress observed in the GP demonstrates greater fragility with this modality of rehabilitation; this should draw the professional's attention to possible biomechanical implications. Whenever possible, professionals should give preference to use of a greater number of implants in the rehabilitation system, with a focus on preserving the supporting tissue with the generation of less intense stresses.


1990 ◽  
Vol 18 (4) ◽  
pp. 216-235 ◽  
Author(s):  
J. De Eskinazi ◽  
K. Ishihara ◽  
H. Volk ◽  
T. C. Warholic

Abstract The paper describes the intention of the authors to determine whether it is possible to predict relative belt edge endurance for radial passenger car tires using the finite element method. Three groups of tires with different belt edge configurations were tested on a fleet test in an attempt to validate predictions from the finite element results. A two-dimensional, axisymmetric finite element analysis was first used to determine if the results from such an analysis, with emphasis on the shear deformations between the belts, could be used to predict a relative ranking for belt edge endurance. It is shown that such an analysis can lead to erroneous conclusions. A three-dimensional analysis in which tires are modeled under free rotation and static vertical loading was performed next. This approach resulted in an improvement in the quality of the correlations. The differences in the predicted values of various stress analysis parameters for the three belt edge configurations are studied and their implication on predicting belt edge endurance is discussed.


1992 ◽  
Vol 20 (4) ◽  
pp. 230-253 ◽  
Author(s):  
T. Akasaka ◽  
K. Kabe ◽  
M. Koishi ◽  
M. Kuwashima

Abstract The deformation behavior of a tire in contact with the roadway is complicated, in particular, under the traction and braking conditions. A tread rubber block in contact with the road undergoes compression and shearing forces. These forces may cause the loss of contact at the edges of the block. Theoretical analysis based on the energy method is presented on the contact deformation of a tread rubber block subjected to compressive and shearing forces. Experimental work and numerical calculation by means of the finite element method are conducted to verify the predicted results. Good agreement is obtained among these analytical, numerical, and experimental results.


Author(s):  
P.A. Radchenko ◽  
◽  
S.P. Batuev ◽  
A.V. Radchenko ◽  
◽  
...  

The fracture of high-strength impactor in interaction with a steel barrier is investigated. Three typesof head parts of the impactor are considered: flat, hemispherical and ogival. Normal and oblique interactions with velocities of 700 and 1000 m/s are investigated. Modeling is carried out by the finite element method in a three-dimensional formulation using the author's software EFES 2.0.The limit value of intensity of plastic deformations is used as a fracture criterion. The influence of the striker head part shape, interaction velocity, interaction angle on the fracture of the impactor and the barrier has been investigated. Conditions under which the striker ricochets were defined.


2014 ◽  
Vol 644-650 ◽  
pp. 1551-1555
Author(s):  
Jian Ming Zhang ◽  
Yong He

This paper is concerned with the convergence of the h-p version of the finite element method for three dimensional Poisson problems with edge singularity on quasi-uniform meshes. First, we present the theoretical results for the convergence of the h-p version of the finite element method with quasi-uniform meshes for elliptic problems on polyhedral domains on smooth functions in the framework of Jacobi-weighted Sobolev spaces. Second, we investigate and analyze numerical results for three dimensional Poission problems with edge singularity. Finally, we verified the theoretical predictions by the numerical computation.


Sign in / Sign up

Export Citation Format

Share Document