MEMS-Based Spatial and Temporal Thermal Management of High Heat Flux Electronics

Author(s):  
Cristina H. Amon ◽  
S. C. Yao

This presentation describes the development of EDIFICE: Embedded Droplet Impingement For Integrated Cooling of Electronics. The EDIFICE project seeks to develop an integrated droplet impingement cooling device for removing chip heat fluxes over 100 W/cm2, employing latent heat of vaporization of dielectric fluids. Micro-manufacturing and MEMS (Micro Electro-Mechanical Systems) will be discussed as enabling technologies for innovative cooling schemes recently proposed. Micro-spray nozzles are fabricated to produce 50–100 micron droplets coupled with surface texturing on the backside of the chip to promote droplet spreading and effective evaporation. A novel feature to enable adaptive on-demand cooling is MEMS sensing (on-chip temperature, remote IR temperature and ultrasonic dielectric film thickness) and MEMS actuation. EDIFICE is integrated within the electronics package and fabricated using advanced micro-manufacturing technologies (e.g., Deep Reactive lon Etching (DRIE) and CMOS CMU-MEMS). The development of EDIFICE involves modeling, CFD simulations, and physical experimentation on test beds. This lecture will then examine jet impingement cooling of EDIFICE with a dielectric coolant and the influence of fluid properties, micro spray characteristics, and surface evaporation. The development of micro nozzles, micro-structured surface texturing, and the system integration of the evaporator is discussed. Results of a prototype testing of swirl nozzles with dielectric fluid HFE-7200 on a notebook PC are presented. This paper also reviews liquid and evaporative cooling research applied to thermal management of electronics. It outlines the challenges to practical implementation and future research needs.

2005 ◽  
Vol 127 (1) ◽  
pp. 66-75 ◽  
Author(s):  
Cristina H. Amon ◽  
S.-C. Yao ◽  
C.-F. Wu ◽  
C.-C. Hsieh

This paper describes the development of embedded droplet impingement for integrated cooling of electronics (EDIFICE), which seeks to develop an integrated droplet impingement cooling device for removing chip heat fluxes over 100W/cm2, employing latent heat of vaporization of dielectric fluids. Micromanufacturing and microelectromechanical systems are used as enabling technologies for developing innovative cooling schemes. Microspray nozzles are fabricated to produce 50–100 μm droplets coupled with surface texturing on the backside of the chip to promote droplet spreading and effective evaporation. This paper examines jet impingement cooling of EDIFICE with a dielectric coolant and the influence of fluid properties, microspray characteristics, and surface evaporation. The development of micronozzles and microstructured surface texturing is discussed. Results of a prototype testing of swiss-roll swirl nozzles with dielectric fluid HFE-7200 on a notebook PC are presented. This paper also outlines the challenges to practical implementation and future research needs.


Author(s):  
Shailesh N. Joshi ◽  
Matthew J. Rau ◽  
Ercan M. Dede ◽  
Suresh V. Garimella

Jet impingement cooling with phase change has shown the potential to meet the increased cooling capacity demands of high-power-density (of order 100 W/cm2) automotive electronics components. In addition to improved heat transfer, phase change cooling has the potential benefit of providing a relatively isothermal cooling surface. In the present study, two-phase jet impingement cooling of multiple electronic devices is investigated, where the fluorinated dielectric fluid HFE-7100 is used as the working fluid. Four different types of jet arrays, namely, a single round jet with orifice diameter of 3.75 mm, and three different 5 × 5 arrays of round jets with orifice diameters of 0.5 mm, 0.6 mm and 0.75 mm, were tested and compared for both heat transfer and pressure drop. The experimental Reynolds number at the orifice ranged from 1860 to 9300. The results show that for the same orifice pressure drop, the single jet reached CHF at approximately 60 W/cm2, while the 5 × 5 array (d = 0.75 mm) safely reached heat fluxes exceeding 65 W/cm2 without reaching CHF. Additionally, the experimental results show that the multi-device cooler design causes an unintended rise in pressure inside the test section and a subsequent increase in sub-cooling from 10 K to 23.3 K.


Author(s):  
Tien-Chien Jen ◽  
Rajendra Jadhav

Thermal management using heat pipes is gaining significant attention in past decades. This is because of the fact that it can be used as an effective heat sink in very intricate and space constrained applications such as in electronics cooling or turbine blade cooling where high heat fluxes are involved. Extensive research has been done in exploring various possible applications for the use of heat pipes as well as understanding and modeling the behavior of heat pipe under those applications. One of the possible applications of heat pipe technology is in machining operations, which involves a very high heat flux being generated during the chip generation process. Present study focuses on the thermal management of using a heat pipe in a drill for a drilling process. To check the feasibility and effectiveness of the heat pipe drill, structural and thermal analyses are performed using Finite Element Analysis. Finite Element Software ANSYS was used for this purpose. It is important for any conceptual design to be made practical and hence a parametric study was carried out to determine the optimum geometry size for the heat pipe for a specific standard drill.


2001 ◽  
Vol 25 (5) ◽  
pp. 231-242 ◽  
Author(s):  
Cristina H. Amon ◽  
Jayathi Murthy ◽  
S.C. Yao ◽  
Sreekant Narumanchi ◽  
Chi-Fu Wu ◽  
...  

1996 ◽  
Vol 118 (2) ◽  
pp. 343-349 ◽  
Author(s):  
K. M. Graham ◽  
S. Ramadhyani

Experimental data and analytical predictions for air/liquid mist jet cooling of small heat sources are presented. The mist jet was created using a coaxial jet atomizer, with a liquid jet of diameter 190 μm located on the axis of an annular air jet of diameter 2 mm. The impingement surface was a square of side 6.35 mm. Experimental data were obtained with mists of both methanol and water. Surface-averaged heat fluxes as high as 60 W/cm2 could be dissipated with the methanol/air mist while maintaining the target surface below 70°C. With the water/air mist, a heat flux of 60 W/cm2 could be dissipated with the target surface at 80°C. Major trends in the data and model predictions have been explained in terms of the underlying hydrodynamic and heat transfer phenomena.


Author(s):  
Gilberto Moreno ◽  
Sreekant Narumanchi ◽  
Xuhui Feng ◽  
Paul Anschel ◽  
Steve Myers ◽  
...  

Abstract Effective thermal management of traction-drive power electronics is critical to the advancement of electric-drive vehicles and is necessary for increasing power density and improving reliability. Replacing traditional silicon devices with more efficient, higher temperature, higher voltage, and higher frequency wide-bandgap (WBG) devices will enable increased power density but will result in higher device heat fluxes. Compact packaging of high-temperature WBG devices near low-temperature-rated components creates thermal management challenges that need to be addressed for future power-dense systems. This paper summarizes the thermal performance of on-road automotive power electronics thermal management systems and provides thermal performance and pumping-power metrics for select vehicles. Thermal analyses reveal that the package/conduction resistance dominates the total thermal resistance (for existing automotive systems). We model advanced packaging concepts and compare the results with existing packaging designs to quantify their thermal performance enhancements. Double-side-cooled configurations that do not use thermal interface materials are package concepts predicted to provide a low junction-to-fluid thermal resistance (compared to current packages). Dielectric-fluid-cooled concepts enable a redesign of the package to reduce the package resistance, can be implemented in single- and two-phase cooling approaches, and allow for cooling of passive components (e.g., capacitors) and bus bars.


Sign in / Sign up

Export Citation Format

Share Document