Model for Pulsating Heat Pipe With Capillary Wick and Varying Channel Diameter

Author(s):  
Brian M. Holley ◽  
Amir Faghri

Variation in channel diameter is investigated as a means of enhancing heat transfer in a pulsating heat pipe with capillary wick using the model presented here. The model is one-dimensional with slug flow where the momentum equation is solved for each liquid slug. The number and mass of liquid slugs are allowed to vary throughout a simulation. The energy equation is solved both in the wall and wick and in the working fluid. The effects of diameter profile, gravity, fill ratio, and heating and cooling schemes can be studied with the model. Results yield similar trends to what has been experimentally observed. Results also indicate that heat transfer can be enhanced when the diameter of the channel is varied along the channel length, thereby providing increased range of heat load capability, less sensitivity to gravity, and in some cases smaller temperature differentials.

2016 ◽  
Vol 369 ◽  
pp. 42-47 ◽  
Author(s):  
Patrik Nemec ◽  
Zuzana Kolková ◽  
Milan Malcho

Heat pipe is well known device which is used to heat transfer phase-change of working fluid. Pulsating heat pipe (PHP) is special type of heat pipe which heat transfer by pulsating movement of working fluid. Article deals about operating activity and thermal performance measurement of this special heat pipe. Operating activity visualization of PHP was performed with PHP made from glass. The two types of PHPs were made. The first PHP has internal diameter of tube 1 mm, second PHP has internal diameter of tube 1.5 mm and both PHPs have eleven meanders. The working fluids used in PHP were water and Fluorinert FC-72. These fluids were chose for their different thermo-physical properties and the visualization observe formation of liquid and vapour phase working fluid during filling process and working operation.Next, the article describes thermal performance measurement of PHP depending on working fluid amount and heat source temperature. Measurement was performed with PHP made from copper tube with inner diameter 1.5 mm curved to the twenty one meanders and filled with water. The results give us image about formation and distribution of working fluid in pulsating heat pipe and about influence of working fluid amount on the heat transfer ability of pulsating heat pipe.


Author(s):  
Mehdi Taslimifar ◽  
Maziar Mohammadi ◽  
Ali Adibnia ◽  
Hossein Afshin ◽  
Mohammad Hassan Saidi ◽  
...  

Homogenous dispersing of nanoparticles in a base fluid is an excellent way to increase the thermal performance of heat transfer devices especially Heat Pipes (HPs). As a wickless, cheap and efficient heat pipe, Pulsating Heat Pipes (PHPs) are important candidates for thermal application considerations. In the present research an Open Loop Pulsating Heat Pipe (OLPHP) is fabricated and tested experimentally. The effects of working fluid namely, water, Silica Coated ferrofluid (SC ferrofluid), and ferrofluid without surface coating of nanoparticles (ferrofluid), charging ratio, heat input, and application of magnetic field on the overall thermal performance of the OLPHPs are investigated. Experimental results show that ferrofluid has better heat transport capability relative to SC ferrofluid. Furthermore, application of magnetic field improves the heat transfer performance of OLPHPs charged with both ferrofluids.


2017 ◽  
Vol 865 ◽  
pp. 137-142
Author(s):  
Somchai Maneewan ◽  
Chantana Punlek ◽  
Hoy Yen Chan ◽  
Atthakorn Thongtha

Heat transfer performances of a pulsating heat pipe (PHP) having internal and external diameter with 4.5 mm and 6 mm with various contents of refrigerant are experimentally investigated. The working fluid as R404A refrigerant was filled in the volume ratios from 0% to 80% and the heat input was controlled in the range from 10 W to 80 W. Obtained results exhibited the ability of R404A refrigerant can enhance the thermal performance in steady state condition. The average temperature difference of the evaporating section and condensing section in the 80% filling volume ratio decreased from 9.5 °C to 2.5 °C when the heating power increase from 10 W to 80 W. The thermal resistance of evaporator and condenser decreased with an increase of the heat input as well. For other filling volume ratios, the trend of temperature difference and thermal resistance was similar to that of the 80% volume filling ratio. Considering the same heat input, the highest heat transfer performance was found at the 80% volume filling ratio. Refrigerant with a relatively low dynamic consistency can lead to relatively high velocity in the PHP that can reduce the temperature difference between the evaporating section and condensing section.


Author(s):  
Radhakanta Sarangi ◽  
Satya Prakash Kar ◽  
Abhilas Swain ◽  
Lalit Kumar Pothal

Abstract Numerical modelling of multi turn Closed Loop Pulsating Heat Pipe (CLPHP) is presented in this paper for ethanol as working fluid. Modelling is carried out for 1mm and 2mm ID PHP for different number of turns, different orientations and at constant wall temperature boundary conditions. Momentum and heat transfer variations with time are investigated numerically solving the one dimensional governing equations for vapor bubble and liquid plugs. Evaporation and condensation takes place by heat transfer through liquid film present around the vapour bubble. The code takes into account the realistic phenomena such as vapour bubble generation, liquid plug merging and super heating of vapor bubbles above its saturation temperature. During merging of liquid plugs, a time step adaptive scheme is implemented and this minimum time step was found to be 10−7 s. Nature of flow is investigated by momentum variation plot. Model results are compared with the experimental results from literature for nine different cases. Maximum variation in heat transfer for all these cases is found to be below ±34%. Keywords: Closed Loop Pulsating Heat Pipe, Liquid Plug, Plug momentum, Vapor Bubble, Heat Transfer, Thin Film Evaporation and Condensation


Author(s):  
Kathryn Nikkanen ◽  
Christian G. Lu ◽  
Masahiro Kawaji

Improved miniaturization and a trend towards increasingly dense and compact architectures have led to unmanageably high heat fluxes in electronic components. In order to keep temperatures at operational levels more advanced cooling solutions are being required that go beyond the solid heat sink and forced convection. Pulsating heat pipes made out of multi port extrusion tubing are a proposed solution. Typically, gas-liquid slug flow occurs in the serpentine channel imbedded in the pulsating heat pipe. Vapour is produced in the heated section and condensed in the cooled section located at opposite ends of the heat pipe. In this work, experiments were conducted on four Multi-Port Extruded (MPE) aluminum tubing heat pipes with different internal structures: rectangular channel looped, rectangular channel unlooped, triangular channel looped, and triangular channel unlooped. The effect of changing the working fluid (ethanol or de-ionized water), fill ratio, and orientation were measured and compared for the different heat pipes. It was found that most of the heat pipes performed better with ethanol than de-ionized water. Only the looped rectangular channel heat pipe performed satisfactorily with de-ionized water, which is attributed both to the larger channel size and the looped architecture. The unlooped heat pipes performed best at the lowest fill ratios (10%) while the looped heat pipes showed their best performances between 30 and 50% with marked decrease at the lower and higher fill ratios. Both looped heat pipes performed poorly in horizontal orientation as compared to vertical, however, the unlooped heat pipes performed quite well in both orientations. This may be more the effect of the fill ratio on horizontal performance as literature suggests that horizontal orientation requires a lower fill ratio to perform satisfactorily.


Author(s):  
Li Jia ◽  
Dayan Yin

The flow of looped pulsating heat pipe was studied by a visualizing experiment, and the PHP is made of high quality glass capillary tube. Under different fill ratio, heat transfer rate and many other influence factors, the flow patterns were observed in the start-up, transition and stable stage. The experimental results indicate that bulk flow, transition flow and annular flow are the major flow patterns in PHP. Under different fill ratios and heat transfer rate, the flow pattern in PHP is transferred form bulk flow to semi-annual flow and annual flow, and the performance of heat transfer is improved. In the experiment, nuclear boiling, the convergence and break up of liquid-plug and vapor-slug were observed. The influence characterization has been done for the variation of fill ration, heat transfer rate, non-condensable gas and inclination angle. The experimental results indicate that the total heat resistant of PHP is increased with fill ratio, and heat transfer rate achieves optimum at filling rate 50%; the heat resistance is decreased with heat transfer rate, and non-condensable gas also has significant influence on it. The temperature of tubes in heating, condensing and observe sections were recorded, The fluctuation of heat pipe wall temperature was analysed, and the phenomena of suddently increase or decrease of temperature, the unregular fluctuation of temperature were analyzed. Otherwise the response time under different conditions was also analyzed.


Author(s):  
Li Jia ◽  
Yan Li

Experimental research was conducted to understand heat transfer characteristics of pulsating heat pipe in this paper. The PHP is made of high quality glass capillary tube. The heat transfer rate and many other influence factors, the flow patterns were observed in the start-up, transition and stable stage under different fill ratio. The effects of heating position on heat transfer were discussed. The experimental results indicate that no annular flow appeares in top heating condition. The flow pattern in PHP is transferred form bulk flow to semi-annual flow and annual flow, and the performance of heat transfer is improved for down heating case under different fill ratios and heat transfer rate. The experimental results show that the total heat resistant of PHP is increased with fill ratio, and heat transfer rate achieves optimum at filling rate 50%. But for pulsating heat pipe with changing diameters the thermal resistance is higher than that with uniform diameters.


Author(s):  
Fu-Min Shang ◽  
Shi-Long Fan ◽  
Jian-Hong Liu

Abstract The pulsating heat pipe (PHP) is a passive cooling device, which has the advantages of simple structure, high heat transfer performance and low production cost. The complex vapor-liquid phase change occurs in the in the initial stage of PHP. In this work, we explore the start-up performance of PHP at different inclination angles and the experiment shows that start-up performance is respectively different when the angles are 0°, 45°, 90°, 135° and 180°. Since the gravitational auxiliary function, the working fluid in the communicating pipe which takes longer time to vaporize change phase earlier than that in PHP’s loop when the angles are 0° and 45°. Nevertheless, when the angle is 90°, the phase change of working fluid in communicating pipe and in the loop occurs at the same time. Meanwhile, the oscillating mode affects the stability of the starting and heat transfer performance of the PHP.


Sign in / Sign up

Export Citation Format

Share Document