Numerical Analysis of the Biomechanical Characteristics and Impact Response of the Human Chest

Author(s):  
Hideyuki Kimpara ◽  
Masami Iwamoto ◽  
Isao Watanabe ◽  
Kazuo Miki ◽  
Jong B. Lee ◽  
...  

The mass density, Young’s modulus (E), tangent modulus (Et) and yield stress (σy) of the human ribs, sternum, internal organs and muscles play important roles when determining impact responses of the chest associated with pendulum impact. A series of parametric studies was conducted using a commercially available three-dimensional finite element (FE) model, Total HUman Model for Safety (THUMS) of the whole human body, to determine the effect of changing these material properties on the impact force, chest deflection, and the number of rib fractures and fractured ribs. Results from this parametric study indicate that the initial chest stiffness was mainly influenced by the mass density of the muscles covering the torso. The number of rib fractures and fractured ribs were primarily determined by E, Et and σy of the ribcage and sternum. Similarly, the E, Et and σy of the ribcage, which is defined as the bony skeleton of the chest, and sternum and E of the internal organs contributed to the maximum chest deflection in frontal impact, while the maximum chest deflection for lateral impact was mainly affected by the E, Et and σy of the ribcage.

2006 ◽  
Vol 128 (5) ◽  
pp. 772-776 ◽  
Author(s):  
Hideyuki Kimpara ◽  
Masami Iwamoto ◽  
Isao Watanabe ◽  
Kazuo Miki ◽  
Jong B. Lee ◽  
...  

The mass density, Young’s modulus (E), tangent modulus (Et), and yield stress (σy) of the human ribs, sternum, internal organs, and muscles play important roles when determining impact responses of the chest associated with pendulum impact. A series of parametric studies was conducted using a commercially available three-dimensional finite element (FE) model, Total HUman Model for Safety (THUMS) of the whole human body, to determine the effect of changing these material properties on the predicted impact force, chest deflection, and the number of rib fractures and fractured ribs. Results from this parametric study indicate that the initial chest apparent stiffness was mainly influenced by the stiffness and mass density of the superficial muscles covering the torso. The number of rib fractures and fractured ribs was primarily determined by the stiffness of the ribcage. Similarly, the stiffness of the ribcage and internal organs contributed to the maximum chest deflection in frontal impact, while the maximum chest deflection for lateral impact was mainly affected by the stiffness of the ribcage. Additionally, the total mass of the whole chest had a moderately effect on the number of rib fractures.


Author(s):  
Kao-Shang Shih ◽  
Thanh An Truong ◽  
Ching-Chi Hsu ◽  
Sheng-Mou Hou

AbstractRib fracture is a common injury and can result in pain during respiration. Conservative treatment of rib fracture is applied via mechanical ventilation. However, ventilator-associated complications frequently occur. Surgical fixation is another approach to treat rib fractures. Unfortunately, this surgical treatment is still not completely defined. Past studies have evaluated the biomechanics of the rib cage during respiration using a finite element method, but only intact conditions were modelled. Thus, the purpose of this study was to develop a realistic numerical model of the human rib cage and to analyse the biomechanical performance of intact, injured and treated rib cages. Three-dimensional finite element models of the human rib cage were developed. Respiratory movement of the human rib cage was simulated to evaluate the strengths and limitations of different scenarios. The results show that a realistic human respiratory movement can be simulated and the predicted results were closely related to previous study (correlation coefficient>0.92). Fixation of two fractured ribs significantly decreased the fixation index (191%) compared to the injured model. This fixation may provide adequate fixation stability as well as reveal lower bone stress and implant stress compared with the fixation of three or more fractured ribs.


2015 ◽  
Vol 138 (1) ◽  
Author(s):  
Folly Abevi ◽  
Alain Daidie ◽  
Michel Chaussumier ◽  
Marc Sartor

In this paper, an original approach is proposed to calculate the static load distribution and the axial stiffness of a planetary roller screw (PRS) mechanism. Assuming that the external loading is shared equally over an arbitrary number of rollers, only a sector of the system is represented to save on computing time. The approach consists in using a structure of bars, beams, and nonlinear springs to model the different components of the mechanism and their interactions. This nonlinear model describes the details of the mechanism and captures the shape of the nut as well as the bending deformation of the roller. All materials are assumed to operate in the elastic range. The load distribution and the axial stiffness are determined in three specific configurations of the system for both compressive and tensile loads. Further, the influence of the shape of the nut is studied in the case of the inverted PRS. The results obtained from this approach are also compared to those computed with a three-dimensional finite-element (3D FE) model. Finally, since the calculations appear to be very accurate, a parametric study is conducted to show the impact of the bending of the roller on the load distribution.


2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Yi Hua ◽  
Praveen Akula ◽  
Matthew Kelso ◽  
Linxia Gu

The closed head impact (CHI) rat models are commonly used for studying the traumatic brain injury. The impact parameters vary considerably among different laboratories, making the comparison of research findings difficult. In this work, numerical CHI experiments were conducted to investigate the sensitivities of intracranial responses to various impact parameters (e.g., impact depth, velocity, and position; impactor diameter, material, and shape). A three-dimensional finite element rat head model with anatomical details was subjected to impact loadings. Results revealed that impact depth and impactor shape were the two leading factors affecting intracranial responses. The influence of impactor diameter was region-specific and an increase in impactor diameter could substantially increase tissue strains in the region which located directly beneath the impactor. The lateral impact could induce higher strains in the brain than the central impact. An indentation depth instead of impact depth would be appropriate to characterize the influence of a large deformed rubber impactor. The experimentally observed velocity-dependent injury severity could be attributed to the “overshoot” phenomenon. This work could be used to better design or compare CHI experiments.


2018 ◽  
Vol 25 (3) ◽  
pp. 621-631 ◽  
Author(s):  
Bin Yang ◽  
Liang He ◽  
Yang Gao

Abstract We built a three-dimensional finite element (FE) model to investigate the impact response of fiber-metal laminates (FMLs). This FE model comprises two metal layers as facesheets and a carbon woven fabric-reinforced plastic laminate as inner core. Simulation was performed on ABAQUS/Explicit platform, and stiffness progressive degeneration criteria were implemented to evaluate damages in composites. The Johnson-Cook model was selected to calculate failures in metal, while surface-based cohesive behavior was adopted to simulate the delamination phenomenon. We studied the fiber stacking sequence, panel thickness, and incident angle effect on the impact behavior of FMLs. The critical penetration energy of the FMLs was determined, and the impact parameter history was discussed.


2019 ◽  
Vol 142 (1) ◽  
Author(s):  
Alvan H. Wordu ◽  
Kong Fah Tee ◽  
Mahmood Shafiee

Abstract Corrosion damage is reported to be one of the leading causes of steel pipeline failure causing significant financial losses to operators and damage to the surrounding environment. As part of a rising confrontation to pipeline integrity management, researchers are continuously seeking better ways to assist on how to identify, assess, and prevent such incidents. Thus, there is a crucial need to establish a connection between assessment of pipeline condition and its structural stability. To achieve this, a three-dimensional finite element (FE) model is developed. The effects of geometry parameters such as defect thickness and spread angle are considered. Results show that thicker pipelines with corrosion groove perform better structurally than slender equivalents. The impact of corrosion damage is assessed to be significant on pipe stability with pipelines experiencing higher displacement and wall stresses with increasing defect depth and spread angle. A protective measure has been proposed using the buried pipes bedding system. The most critical spread angle is at 60 deg for unprotected pipe sections and 90 deg for bedded protected sections.


Author(s):  
Omar Awad ◽  
Yahia M. Al-Smadi

Boxing or martial arts are games where players chests are subject to lateral impact, the impact loads travel through skin, ribs, mediastinum (i.e. a thoracic compartment) and then through the skeleton to the rest of the body. When thorax is subject to lateral force exceeding the elastic limit of thoracic compartment, players often go in shock demanding prompt resuscitation. This paper investigates the thorax response of boxer being subject to lateral impact followed by Cardiopulmonary resuscitation (CPR). Due to complexity of thorax structure and materials, three dimensional finite element model in ANSYS was created to perform the computational biomechanical analysis of two-stage loading (i.e. lateral impact load and CPR forces). Model input parameters such as material, loading and boundary conditions have been defined. Post processing values such as deformations and stresses have been presented.


Author(s):  
Valeriy Sutyrin

This paper gives modal analysis results for mid-body of a refrigerator carrier ship by means of combined three-dimensional finite-element model with 1.5 million DOF. The study estimates the error of modal analysis for the ship structure if its boundary conditions are specified in advance, i.e. approximately, as well as analyses the gain in time offered by structuring the analytical model as per reduction (condensation) method. Analytical approaches thus transformed can be successfully applied in filtering lower frequencies and modes of natural vibrations for structural elements and joints of hull in the direct vicinity of exciting force application points.


2017 ◽  
Vol 7 ◽  
pp. 219-223
Author(s):  
Beril Demir Karamanli ◽  
Hülya Kılıçoğlu ◽  
Armagan Fatih Karamanli

Aims The aim of this study is to evaluate the effects of the chincup appliance used in the treatment of Class III malocclusions, not only on the mandible or temporomandibular joint (TMJ) but also on all the craniofacial structures. Materials and Methods Chincup simulation was performed on a three-dimensional finite element (FE) model. 1000 g (500 g per side) force was applied in the direction of chin-condyle head. Nonlinear FE analysis was used as the numerical analysis method. Results By the application of chincup, stresses were distributed not only on TMJ or mandible but also on the circummaxillary sutures and other craniofacial structures. Conclusions Clinical changes obtained by chincup treatment in Class III malocclusions are not limited by only mandible. It was seen that also further structures were affected.


Author(s):  
José Renato M. de Sousa ◽  
Rachel G. B. C. Genzani ◽  
Elisabeth C. Porto ◽  
Alexandre T. Borges ◽  
Emmanuel F. Nogueira ◽  
...  

A torpedo base is a type of conductor casing that embeds into the seabed mainly by free fall using its own weight as driving energy. One of the advantages of this concept is to install the conductor casing before the dynamic positioned (DP) drillship arrival at the location. This reduces the time of the well drilling leading to significant cost saving. However, the need to withstand the challenging loads of the ultra-deep water scenarios pushed the typical torpedo base design to its limit and, consequently, modifications to its original geometry and more accurate design models are needed. Therefore, in this work, a new torpedo base, designed to sustain high axial loads in very soft clays, is analyzed with a three-dimensional finite element (FE) model. This model accounts for the setup-effects of the soil with the use of a previously proposed analytical approach to estimate the stress state of the soil at any time after the installation of the base. The results obtained indicate that the axial holding capacity of the base varies along time. The holding capacity increase rapidly at the beginning of the installation, but this rate reduces after the first days. Depending on soil characteristics, full axial capacity may be reached more than one year after the installation of the base. Moreover, the use of more than four fins welded to the shaft of the conductor casing modifies the shear zone along the base, but does not contribute to a significant increase in the axial holding capacity.


Sign in / Sign up

Export Citation Format

Share Document