Thermal Conductivity of Ultra Thin Single Crystal Silicon Layers: Part II — Experimental Data and Modeling at High Temperatures

Author(s):  
Wenjun Liu ◽  
Mehdi Asheghi ◽  
K. E. Goodson

Simulations of the temperature field in Silicon-on-Insulator (SOI) and strained-Si transistors can benefit from experimental data and modeling of the thin silicon layer thermal conductivity at high temperatures. This work presents the first experimental data for 20 and 100 nm thick single crystal silicon layers at high temperatures and develops algebraic expressions to account for the reduction in thermal conductivity due to the phonon-boundary scattering for pure and doped silicon layers. The model applies to temperatures range 300–1000 K for silicon layer thicknesses from 10 nm to 1 μm (and even bulk) and agrees well with the experimental data. In addition, the model has an excellent agreement with the predictions of thin film thermal conductivity based on thermal conductivity integral and Boltzmann transport equation, although it is significantly more robust and convenient for integration into device simulators. The experimental data and predictions are required for accurate thermal simulation of the semiconductor devices, nanostructures and in particular the SOI and strained-Si transistors.

2005 ◽  
Vol 128 (1) ◽  
pp. 75-83 ◽  
Author(s):  
Wenjun Liu ◽  
Mehdi Asheghi

Self-heating in deep submicron transistors (e.g., silicon-on-insulator and strained-Si) and thermal engineering of many nanoscale devices such as nanocalorimeters and high-density thermomechanical data storage are strongly influenced by thermal conduction in ultra-thin silicon layers. The lateral thermal conductivity of single-crystal silicon layers of thicknesses 20 and 100nm at temperatures between 30 and 450K are measured using joule heating and electrical-resistance thermometry in suspended microfabricated structures. In general, a large reduction in thermal conductivity resulting from phonon-boundary scattering is observed. Thermal conductivity of the 20nm thick silicon layer at room temperature is nearly 22Wm−1K−1, compared to the bulk value, 148Wm−1K−1. The predictions of the classical thermal conductivity theory that accounts for the reduced phonon mean free paths based on a solution of the Boltzmann transport equation along a layer agrees well with the experimental results.


Author(s):  
Wenjun Liu ◽  
Mehdi Asheghi

Self-heating in deep submicron transistors (e.g., Silicon-on-insulator and strained-Si) and thermal engineering of many nanoscale devices such as nanocalorimeters and high-density thermomechanical data storage are strongly influenced by thermal conduction in ultra-thin silicon layers. The lateral thermal conductivity of single-crystal silicon layers of thicknesses 20 and 100 nm at temperatures between 30 and 300 K was measured using Joule heating and electrical-resistance thermometry in suspended microfabricated structures. In general, a large reduction in thermal conductivity resulting from phonon-boundary scattering, particularly at low temperatures, is observed. Thermal conductivity of the 20 nm thick silicon layer at room temperature is nearly 22 W m−1K−1, compared to the bulk value, 148 W m−1K−1. The predictions of the classical thermal conductivity theory that accounts for the reduced phonon mean free paths based on a solution of the Boltzmann transport equation along a layer agrees well with the experimental results.


2013 ◽  
Vol 135 (9) ◽  
Author(s):  
Timothy S. English ◽  
Leslie M. Phinney ◽  
Patrick E. Hopkins ◽  
Justin R. Serrano

Accurate thermal conductivity values are essential for the successful modeling, design, and thermal management of microelectromechanical systems (MEMS) and devices. However, the experimental technique best suited to measure the thermal conductivity of these systems, as well as the thermal conductivity itself, varies with the device materials, fabrication processes, geometry, and operating conditions. In this study, the thermal conductivities of boron doped single-crystal silicon microbridges fabricated using silicon-on-insulator (SOI) wafers are measured over the temperature range from 80 to 350 K. The microbridges are 4.6 mm long, 125 μm tall, and either 50 or 85 μm wide. Measurements on the 85 μm wide microbridges are made using both steady-state electrical resistance thermometry (SSERT) and optical time-domain thermoreflectance (TDTR). A thermal conductivity of 77 Wm−1 K−1 is measured for both microbridge widths at room temperature, where the results of both experimental techniques agree. However, increasing discrepancies between the thermal conductivities measured by each technique are found with decreasing temperatures below 300 K. The reduction in thermal conductivity measured by TDTR is primarily attributed to a ballistic thermal resistance contributed by phonons with mean free paths larger than the TDTR pump beam diameter. Boltzmann transport equation (BTE) modeling under the relaxation time approximation (RTA) is used to investigate the discrepancies and emphasizes the role of different interaction volumes in explaining the underprediction of TDTR measurements.


Author(s):  
N. Lewis ◽  
E. L. Hall ◽  
A. Mogro-Campero ◽  
R. P. Love

The formation of buried oxide structures in single crystal silicon by high-dose oxygen ion implantation has received considerable attention recently for applications in advanced electronic device fabrication. This process is performed in a vacuum, and under the proper implantation conditions results in a silicon-on-insulator (SOI) structure with a top single crystal silicon layer on an amorphous silicon dioxide layer. The top Si layer has the same orientation as the silicon substrate. The quality of the outermost portion of the Si top layer is important in device fabrication since it either can be used directly to build devices, or epitaxial Si may be grown on this layer. Therefore, careful characterization of the results of the ion implantation process is essential.


Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1118
Author(s):  
Yuan Tian ◽  
Yi Liu ◽  
Yang Wang ◽  
Jia Xu ◽  
Xiaomei Yu

In this paper, a polyimide (PI)/Si/SiO2-based piezoresistive microcantilever biosensor was developed to achieve a trace level detection for aflatoxin B1. To take advantage of both the high piezoresistance coefficient of single-crystal silicon and the small spring constant of PI, the flexible piezoresistive microcantilever was designed using the buried oxide (BOX) layer of a silicon-on-insulator (SOI) wafer as a bottom passivation layer, the topmost single-crystal silicon layer as a piezoresistor layer, and a thin PI film as a top passivation layer. To obtain higher sensitivity and output voltage stability, four identical piezoresistors, two of which were located in the substrate and two integrated in the microcantilevers, were composed of a quarter-bridge configuration wheatstone bridge. The fabricated PI/Si/SiO2 microcantilever showed good mechanical properties with a spring constant of 21.31 nN/μm and a deflection sensitivity of 3.54 × 10−7 nm−1. The microcantilever biosensor also showed a stable voltage output in the Phosphate Buffered Saline (PBS) buffer with a fluctuation less than 1 μV @ 3 V. By functionalizing anti-aflatoxin B1 on the sensing piezoresistive microcantilever with a biotin avidin system (BAS), a linear aflatoxin B1 detection concentration resulting from 1 ng/mL to 100 ng/mL was obtained, and the toxic molecule detection also showed good specificity. The experimental results indicate that the PI/Si/SiO2 flexible piezoresistive microcantilever biosensor has excellent abilities in trace-level and specific detections of aflatoxin B1 and other biomolecules.


2020 ◽  
pp. 100107
Author(s):  
L.G. Michaud ◽  
E. Azrak ◽  
C. Castan ◽  
F. Fournel ◽  
F. Rieutord ◽  
...  

Author(s):  
Timothy S. English ◽  
Leslie M. Phinney ◽  
Patrick E. Hopkins ◽  
Justin R. Serrano

Accurate thermal conductivity values are essential to the modeling, design, and thermal management of microelectromechanical systems (MEMS) and devices. However, the experimental technique best suited to measure thermal conductivity, as well as thermal conductivity itself, varies with the device materials, fabrication conditions, geometry, and operating conditions. In this study, the thermal conductivity of boron doped single-crystal silicon-on-insulator (SOI) microbridges is measured over the temperature range from 77 to 350 K. The microbridges are 4.6 mm long, 125 μm tall, and two widths, 50 or 85 μm. Measurements on the 85 μm wide microbridges are made using both steady-state electrical resistance thermometry and optical time-domain thermoreflectance. A thermal conductivity of ∼ 77 W/mK is measured for both microbridge widths at room temperature, where both experimental techniques agree. However, a discrepancy at lower temperatures is attributed to differences in the interaction volumes and in turn, material properties, probed by each technique. This finding is qualitatively explained through Boltzmann transport equation modeling under the relaxation time approximation.


1985 ◽  
Vol 53 ◽  
Author(s):  
C. Slawinski ◽  
B.-Y. Mao ◽  
P.-H. Chang ◽  
H.W. Lam ◽  
J.A. Keenan

ABSTRACTBuried nitride silicon-on-insulator (SOI) structures have been fabricated using the technique of nitrogen ion implantation. The crystallinity of the top silicon film was found to be exceptionally good. The minimum channeling yield, Xmin' was better than 3%. This is comparable to the value observed for single crystal silicon. The buried insulator formed during the anneals has been identified as polycrystalline α-Si3 N4 with numerous silicon inclusions. This nitride, however, has been found to remain amorphous in regions at the center of the implant where the nitrogen concentration exceeds the stoichiometric level of Si3N4. Nitrogen donor formation in the top silicon layer has also been observed.


Sign in / Sign up

Export Citation Format

Share Document