Multilayer Insulation Venting During Payload Depressurization

Author(s):  
Ingrid Cotoros ◽  
Ab Hashemi

Multilayer Insulation (MLI) blankets consist of closely spaced aluminum coated shields that are spaced apart to reduce heat transfer between the payload and the environment, particularly in vacuum. In space application, satellite systems and sub-systems are wrapped in MLI blankets to thermally isolate them from the environment and achieve thermal control requirements. During spacecraft launch, the payload undergoes a rapid depressurization before reaching steady state condition. The MLI blankets are usually perforated and/or connected at the boundaries with Velcro strips to allow out-gassing. The blankets can lose their integrity and functionality if the depressurization process is too rapid: the out-gassing flow can tear the perforations, and the pressure differential built-up across the blanket can pull the Velcro strips apart. This paper describes the design and modeling of depressurization through X-slits cut into the blanket and Velcro strips taped along the sides. A methodology is developed, and a model for quantifying the pressure differential build-up is described and applied to a payload enclosure aboard a Delta II rocket.

2019 ◽  
Vol 29 (8) ◽  
pp. 1155-1168
Author(s):  
S. Y. Qin ◽  
Y. A. Wang ◽  
S. Gao ◽  
D. G. Xu ◽  
X. Cui ◽  
...  

The radiant wall composited with capillary tubes has been widely applied in heating or cooling systems due to its large heat transfer area, low-temperature heating and high-temperature cooling. In this study, a ratio model of heat transfer in steady-state condition was established, which explores heat transfer capacity from the capillary layer (active layer) towards the indoor and outdoor sides. The experimental data including the radiant surface temperature, the capillary layer temperature and the heat flux distribution were collected in cooling and heating conditions. The proposed ratio model was validated. The results show that the fluctuation of indoor air temperature is relatively small, suggesting that the radiant system possesses higher stability. Results showed that thermal resistances of the composite radiant wall in summer and winter conditions vary greatly due to different moisture contents. With the continuation of the system operation, the calculated values from the ratio model under the steady-state condition were more consistent with average values obtained from experiments under unsteady-state conditions, indicating that the overall heat transfer performance of the composite radiant wall could be properly evaluated by the proposed model in engineering applications.


2010 ◽  
Vol 132 (5) ◽  
Author(s):  
Jorge C. Lallave ◽  
Muhammad M. Rahman

Abstract This paper considers the transient conjugate heat transfer characterization of a partially confined liquid jet impinging on a rotating and uniformly heated solid disk of finite thickness and radius. A constant heat flux was imposed at the bottom surface of the solid disk at t=0, and heat transfer was monitored for the entire duration of the transient until the steady state condition was reached. Calculations were done for a number of disk materials using water as the coolant, covering a range of Reynolds numbers (225–900), Ekman numbers (7.08×10−5−∞), nozzle-to-target spacing (β=0.25–1.0), confinement ratios (rp/rd=0.2–0.75), disk thicknesses to nozzle diameter ratios (b/dn=0.25–1.67), and solid to fluid thermal conductivity ratios (36.91–697.56). It was found that a higher Reynolds number decreases the time to achieve the steady state condition and increases the local and average Nusselt number. The duration of the transient increases with the increment of the Ekman number and disk thickness, and the reduction in the thermal diffusivity of the disk material.


Three dimensional numerical models were developed to make prediction free convection heat transfer at steady state condition from radial flow heat sink. The air was considered as the medium of heat transfer. In radial flow heat sink, heat conducts through base in radial pattern and is uniformly transported to the fins. The Tagucy method was used to investigate the effect of several design parameters such as fin length, fin height, number of fins and heat sink base radius on heat transfer. There are five factors and four levels on each factor were chosen. Sixteen types of model were analyzed to obtain total heat transfer for each model. The result was used to estimate the optimum designed values of the parameters affecting the heat sink efficiency. The reproducibility of the optimum design value was verified. The average rate of heat transfer of optimum model was increased by more than 50 % than the reference model. Finally, the heat transfer data of radial flow heat sink were correlated of several outer radius by an equation.


Author(s):  
Muhammad M. Rahman ◽  
Cesar F. Hernandez

Transient heating of a hemispherical solid plate of finite thickness during impingement of a free liquid jet is studied. A constant heat flux is imposed at the inner surface of the hemispherical plate at t = 0 and heat transfer is monitored for the entire duration of the transient until a steady state condition is reached. Calculations are done for Re = 500–1500 and b/dn = 0.083–1.5 using water (H2O) as the coolant and various solid materials such as silicon, Constantan, and copper. It was found that the time for the plate to achieve the steady-state condition decreases and Nusselt number increases with Reynolds number. A plate material with higher thickness provides higher average Nusselt number and longer transient period.


Computation ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 65
Author(s):  
Aditya Dewanto Hartono ◽  
Kyuro Sasaki ◽  
Yuichi Sugai ◽  
Ronald Nguele

The present work highlights the capacity of disparate lattice Boltzmann strategies in simulating natural convection and heat transfer phenomena during the unsteady period of the flow. Within the framework of Bhatnagar-Gross-Krook collision operator, diverse lattice Boltzmann schemes emerged from two different embodiments of discrete Boltzmann expression and three distinct forcing models. Subsequently, computational performance of disparate lattice Boltzmann strategies was tested upon two different thermo-hydrodynamics configurations, namely the natural convection in a differentially-heated cavity and the Rayleigh-Bènard convection. For the purposes of exhibition and validation, the steady-state conditions of both physical systems were compared with the established numerical results from the classical computational techniques. Excellent agreements were observed for both thermo-hydrodynamics cases. Numerical results of both physical systems demonstrate the existence of considerable discrepancy in the computational characteristics of different lattice Boltzmann strategies during the unsteady period of the simulation. The corresponding disparity diminished gradually as the simulation proceeded towards a steady-state condition, where the computational profiles became almost equivalent. Variation in the discrete lattice Boltzmann expressions was identified as the primary factor that engenders the prevailed heterogeneity in the computational behaviour. Meanwhile, the contribution of distinct forcing models to the emergence of such diversity was found to be inconsequential. The findings of the present study contribute to the ventures to alleviate contemporary issues regarding proper selection of lattice Boltzmann schemes in modelling fluid flow and heat transfer phenomena.


1974 ◽  
Vol 36 (1) ◽  
pp. 59-66
Author(s):  
Oscar A. Gómez-Poviña ◽  
Carmen Sainz de Calatroni ◽  
Susana Orden de Puhl ◽  
Mariano J. Guerrero

2006 ◽  
Author(s):  
Zhilin Qi ◽  
Zhimin Du ◽  
Baosheng Liang ◽  
Yong Tang ◽  
Shouping Wang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document