Surface-Based Scaffold Design: A Mechanobiological Approach

Author(s):  
B. Bucklen ◽  
M. Wettergreen ◽  
M. Heinkenschloss ◽  
M. A. K. Liebschner

Despite recent need-based advances in orthopedic scaffold design, current implants are unsuitable as “total” scaffold replacements. Both mechanical requirements of stiffness/strength and biological stipulations dictating cellular behavior (attachment, differentiation) should be included. The amount of mechanical stimulation in the form of stresses, strains, and energies most suitable toward implant design is presently unknown. Additionally unknown is if whole-bone optimization goals such as uniform and non-uniform driving forces are applicable to a scaffold-bone interface. At the very least, scaffolds ready for implantation should exhibit mechanical distributions (dependent on loading type) on the surface within the typical mechanical usage window. Scaffold micro-architectures can be strategically shifted into that window. The overall goal of this study was to produce microarchitectures tailored to a more uniform mechanical distribution, while maintaining the morphological properties necessary to sustain its mechanical integrity. The mechanical adjustment stimuli investigated were von Mises stress, strain energy density, maximum principle strain, and volumetric strain. Scaffold models of a similar volume fraction were generated of three initial architectures (Rhombitruncated Cuboctahedron, hollow sphere, and trabecular-like bone cube) using high resolution voxel mapping. The resulting voxels were translated into finite element meshes and solved, with a specially written iterative solver created in Fortran90, under confined displacement boundary conditions. The result was verified against a commercial software. Once the mechanical distributions were identified one of two methods was chosen to alter the configuration of material in Cartesian space. The success of the alteration was judged through a diagnostic based on the histogram of mechanical values present on the surface of the micro-architecture. The first method used a compliant approach and, for the case of stress, reinforced locations on the surface with large stresses with extra material (strategically taken from the least stressed portions). The second method used a simulated annealing approach to randomly mutate the initial state in a “temperature” dependent manner. Results indicate that the mechanical distributions of the initial scaffold designs vary significantly. Additionally, the end state of the adjustment demonstrated anisotropy shifts toward the direction of loading. Moreover, the adjustment methods were found to be sensitive both to the mechanical parameter used for adjustment and the portion of the surface adjusted at each increment. In conclusion, scaffolds may be adjusted using a mechanical surface-based objective, as the surface of the scaffold is crucial toward its in vivo acceptance. This technique provides some mathematical specificity toward the whole of computer-aided tissue engineering.

2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Kristel Van Goethem ◽  
Muriel Norde

AbstractDutch features several morphemes with “privative” semantics that occur as left-hand members in compounds (e.g., imitatieleer ‘imitation leather’, kunstgras ‘artificial grass’, nepjuwelen ‘fake jewels’). Some of these “fake” morphemes display great categorical flexibility and innovative adjectival uses. Nep, for instance, is synchronically attested as an inflected adjective (e.g., neppe cupcake ‘fake cupcake’). In this paper, we combine an extensive corpus study of eight Dutch “fake” morphemes with statistical methods in distributional semantics and collexeme analysis in order to compare their semantic and morphological properties and to find out which factors are the driving forces behind their exceptional “extravagant” morphological behavior. Our analyses show that debonding and adjectival reanalysis are triggered by an interplay of two factors, i.e., type frequency and semantic coherence, which allow us to range the eight morphemes on a cline from more schematic to more substantive “fake” constructions.


Author(s):  
Camille Perier-Metz ◽  
Georg N. Duda ◽  
Sara Checa

AbstractLarge bone defects remain a clinical challenge because they do not heal spontaneously. 3-D printed scaffolds are a promising treatment option for such critical defects. Recent scaffold design strategies have made use of computer modelling techniques to optimize scaffold design. In particular, scaffold geometries have been optimized to avoid mechanical failure and recently also to provide a distinct mechanical stimulation to cells within the scaffold pores. This way, mechanical strain levels are optimized to favour the bone tissue formation. However, bone regeneration is a highly dynamic process where the mechanical conditions immediately after surgery might not ensure optimal regeneration throughout healing. Here, we investigated in silico whether scaffolds presenting optimal mechanical conditions for bone regeneration immediately after surgery also present an optimal design for the full regeneration process. A computer framework, combining an automatic parametric scaffold design generation with a mechano-biological bone regeneration model, was developed to predict the level of regenerated bone volume for a large range of scaffold designs and to compare it with the scaffold pore volume fraction under favourable mechanical stimuli immediately after surgery. We found that many scaffold designs could be considered as highly beneficial for bone healing immediately after surgery; however, most of them did not show optimal bone formation in later regenerative phases. This study allowed to gain a more thorough understanding of the effect of scaffold geometry changes on bone regeneration and how to maximize regenerated bone volume in the long term.


Author(s):  
A. K. Rana ◽  
P. P. Dey

In this work, the von Mises stress and plastic strain distribution of Ferrite-Martensite–Dual-Phase (FMDP) steels are predicted at various stages of deformation. The failure modes and volume fraction effect are identified based on Representative Volume Element (RVE). FMDP steel consists of a typical ferrite-matrix phase, in which martensite-islands are dispersed. Recently FMDP steels are increasingly used to the various car parts in demand. 2D-RVEs are also utilised to predict the orientations effect of the martensite phase in the FMDP steels. Based on the position of the element, the boundary conditions (BC) are given in the RVE of FMDP steel microstructures. The failure modes are examined in the form of severe plastic strain localisation. While the distribution of islands in the microstructure varies, as a result, the deformation inhomogeneity increases with a rise of martensite fraction. The results of numerical computation and the trend of experimental failure shown in the literature are compared. This is signifying that the overall macro-behaviour of FMDP steel, as a consequence of stress-strain partitioning and influence of martensite-island volume fractions (MVFs), can be predicted by the finite element (FE) based 2D-RVE modelling.


2011 ◽  
Vol 22 (1) ◽  
pp. 153 ◽  
Author(s):  
Arnaud Delarue ◽  
Dominique Jeulin

Composite materials containing aggregates of spherical inclusions are studied from 3D images obtained by X-ray microtomography. Using two point statistics in different directions, and the empirical distribution of orientations of pairs of inclusions, interesting details concerning the anisotropy of the distribution of inclusions are obtained and are related to the method of construction for these materials. Some 3D morphological properties, available on the 3D images, give new information on the shape and the distribution of aggregates: tortuosity of shortest paths in the matrix, local volume fraction, geodesic distance function, local histograms of numbers of objects.


Aerospace ◽  
2018 ◽  
Vol 5 (4) ◽  
pp. 120 ◽  
Author(s):  
Barbara Tse ◽  
Xueli Yu ◽  
Hugh Gong ◽  
Constantinos Soutis

Recycling carbon fibre is crucial in the reduction of waste from the increasing use of carbon fibre reinforced composites in industry. The reclaimed fibres, however, are usually short and discontinuous as opposed to the continuous virgin carbon fibre. In this work, short recycled carbon fibres (rCF) were mixed with flax and poly-lactic acid (PLA) fibres acting as the matrix to form nonwoven mats through wet-laying. The mats were compression moulded to produce composites with different ratios of rCF and flax fibre in the PLA matrix. Their flexural behaviour was examined through three-point-bending tests, and their morphological properties were characterised with scanning electron and optical microscopes. Experimental data showed that the flexural properties increased with higher rCF content, with the maximum being a flexural modulus of approximately 14 GPa and flexural strength of 203 MPa with a fibre volume fraction of 75% rCF and 25% flax fibre. The intimate mixing of the fibres contributed to a lesser reduction of flexural properties when increasing the flax fibre content.


2010 ◽  
Vol 139-141 ◽  
pp. 1400-1405
Author(s):  
Wang Yu Liu ◽  
Yong Zhang

The bend-twist coupling design method of spar cap of 1.5MW wind turbine blade made by biased hybrid fibers is discussed, and the coupling parameter is established. It is found that flap-twist coupling effect is only related to the laminated materials, not sensitive to the geometry shape. When varying the angle of off-axis carbon fibers from 7.5° to 30° and the volume fraction from 10% to 90%, different bend-twist coupling effect can be obtained. The results show that the optimal angle of spar cap is closer to 18°, and of skins are about 13°. When constraints, such as fibers strain, the in-plane shear stress and Von Mises stress of static index, are added on the blade, the spar cap is optimized with about 45% carbon fiber volume fraction and 18° off-axis angle. Finally, the impact of natural frequencies of dynamic performance on the blade design is proved to be inessential.


2015 ◽  
Vol 27 (04) ◽  
pp. 1550037 ◽  
Author(s):  
G. Uzcátegui ◽  
E. Dávila ◽  
M. Cerrolaza

Objective: To propose a methodology based on virtual simulation to assist in the design proposals of dental implants. Methods: The finite element method (FEM) was used to analyze the biomechanical dental implant system behavior, determining von Mises stress distribution induced by functional loads, varying parameter as load direction and geometric characteristic of the implant (taper, length, abutment angulation, thread pitch and width pitch). A final design was obtained by considering the parameters that showed improved performance. The estimated lifetime of the final design was calculated by reproducing in a virtual way the experimental fatigue test required by the ISO:14801 standards. Results: For all the studied cases, the maximum stresses were obtained in the connecting screw under oblique loads (OLs). The estimated lifetime for this critical part is at least 5 × 106 cycles, which meets the requirement of the ISO:14801. In bone tissue, the largest stresses were concentrated in cortical bone, in the zone surrounding the implant, in good agreement with previous reports. Conclusions: A dental implant design was obtained and validated through a simple and efficient methodology based on the application of numerical methods and computer simulations.


2004 ◽  
Vol 287 (1) ◽  
pp. C114-C124 ◽  
Author(s):  
Fujio Okamoto ◽  
Hiroshi Kajiya ◽  
Hidefumi Fukushima ◽  
Eijiro Jimi ◽  
Koji Okabe

We examined changes in electrical and morphological properties of rat osteoclasts in response to prostaglandin (PG)E2. PGE2 (>10 nM) stimulated an outwardly rectifying Cl− current in a concentration-dependent manner and caused a long-lasting depolarization of cell membrane. This PGE2-induced Cl− current was reversibly inhibited by 4,4′-diisothiocyanostilbene-2,2′-disulfonic acid (DIDS), 5-nitro-2-(3-phenylpropylamino)-benzoic acid (NPPB), and tamoxifen. The anion permeability sequence of this current was I− > Br− ≈ Cl− > gluconate−. When outwardly rectifying Cl− current was induced by hyposmotic extracellular solution, no further stimulatory effect of PGE2 was seen. Forskolin and dibutyryl adenosine 3′,5′-cyclic monophosphate (DBcAMP) mimicked the effect of PGE2. The PGE2-induced Cl− current was inhibited by pretreatment with guanosine 5′- O-2-(thiodiphosphate) (GDPβS), Rp-adenosine 3′,5′-cyclic monophosphorothioate (Rp-cAMPS), N-(2-[ p-bromocinnamylamino]ethyl)-5-isoquinolinesulfonamide dihydrochloride (H-89), and protein kinase A inhibitors. Even in the absence of nonosteoclastic cells, PGE2 (1 μM) reduced cell surface area and suppressed motility of osteoclasts, and these effects were abolished by Rp-cAMPS or H-89. PGE2 is known to exert its effects through four subtypes of PGE receptors (EP1–EP4). EP2 and EP4 agonists (ONO-AE1-259 and ONO-AE1-329, respectively), but not EP1 and EP3 agonists (ONO-DI-004 and ONO-AE-248, respectively), mimicked the electrical and morphological actions of PGE2 on osteoclasts. Our results show that PGE2 stimulates rat osteoclast Cl− current by activation of a cAMP-dependent pathway through EP2 and, to a lesser degree, EP4 receptors and reduces osteoclast motility. This effect is likely to reduce bone resorption.


2014 ◽  
Vol 627 ◽  
pp. 57-60 ◽  
Author(s):  
Wasim M.K. Helal ◽  
Dong Yan Shi

Functionally graded materials (FGMs) have become helpful in our engineering applications. Analysis of functionally graded material (FGM) plate during debonding case with different boundary conditions is the main purpose of this investigation. Elastic modulus (E) of functionally graded (FG) plate is assumed to vary continuously throughout the height of the plate, according the volume fraction of the constituent materials based on a modified sigmoid function, but the value of Poisson coefficient is constant. In this research, the finite element method (FEM) is used in order to show the shape of a plate made of FGM during debonding case with different boundary conditions. In the present investigation, the displacement value applied to the FGM plate is changed in order to find the relationship between the maximum von Mises stress and the displacement. Also, the relationship between the maximum shear stress and the displacement is carried out in the present work. The material gradient indexes of the FGM plate are changed from 1 to 10. The stress distributions around the debonding zone with all the material gradient indexes of the FGM plate are investigated in this work.


2010 ◽  
Vol 150-151 ◽  
pp. 1819-1823
Author(s):  
Yu Jiao Wu ◽  
Ming Rui Gao ◽  
Yu Ling Chen ◽  
Juan Li ◽  
Shao Lin Ju

Polypropylene(PP)/nano-TiO2 composites were prepared by the melt intercalation molding. Based on the assumption of continuum mechanics model for materials, a finite element analysis model for the composites was constructed using ANSYS 11.0 software. In the stage of deformation (pre-yield regime) the response mechanism of the stress and the strain for composites was investigated, and the von mises stress field of PP/nano-TiO2 composites has also been simulated. It was found that the simulation results are Consistent with the testing results at low volume strain level. The results simulated using the 2D model are accurate with the experimental results. If the volume fraction of particles is less, other particles have little influence on the local stress field of a certain particle, no obvious overlap or cross of the stress field could be found between two neighboring particles. While applying different loads, the stress jumps to maximum stress value in the interaction region of the two phase firstly, and then it occurs that the particles debond with the matrix.


Sign in / Sign up

Export Citation Format

Share Document