Multiplexed Force Control of Pneumatic Muscles

Author(s):  
V. Jouppila ◽  
A. Ellman

Pneumatic actuators are often used in applications that require high power-to-weight ratio, combined with low price and clean and fast operation. However, due to the compressibility of air and highly nonlinear behavior of seal friction, the position and force control of these actuators is difficult to manage. As a result, pneumatic cylinders have been used for many years solely in simple repetitive tasks requiring only a very limited amount of system control. Nonetheless, the pneumatic actuators have properties such as compactness, high power-to-weight ratio, and simplicity that are desirable features in advanced robotics. To overcome the shortcomings, a number of advanced pneumatic components have been developed, of which the most promising is the pneumatic muscle. Compared to a cylinder, a pneumatic muscle not only has a higher power-to-weight and power-to-volume ratio but it is also almost frictionless and has zero leakage. In spite of the muscle actuator's nonlinear force-to-contraction characteristics, many motion and force control methods have been successfully applied to it. The characteristics of the actuator enable it to be used in simple positioning systems and as a variable gas spring. The actuator's almost linear pressure-to-force ratio is extremely well-suited to a variety of gripping and pressing applications. Due to the muscle actuator's characteristics and recent developments in pneumatic valve technology, there is an opportunity to share a single pressure control servo valve among multiple muscle actuators. The multiplexed control of the actuators with only one servo valve reduces the system costs significantly. In this paper we investigate the feasibility of employing multiplexed force control of four pneumatic muscle actuators. In the system, pressure is controlled by a single proportional pressure valve. High-speed switching valves are used for activating the pressure control for each muscle actuator in the desired manner. Pneumatic cylinders are attached to the other ends of the muscles in order to cause controllable position disturbances. The displacement, force and pressure of each muscle are measured with appropriate sensors. The system behavior is investigated under position disturbances.


Author(s):  
Ville Jouppila ◽  
S. Andrew Gadsden ◽  
Asko Ellman

Pneumatic muscle actuators offer a higher force-to-weight ratio compared to traditional cylinder actuators, and introduce stick-slip-free operation that offers an interesting option for positioning systems. Despite several advantages, pneumatic muscle actuators are commonly avoided in industrial applications, mainly due to rather different working principles. Due to the highly nonlinear characteristics of the muscle actuator and pneumatic system, a reliable control strategy is required. Although muscle actuators are widely studied, the literature lacks detailed studies where the performance for servo systems is compared with traditional pneumatic cylinders. In this paper, a pneumatic servo actuation system is compared with a traditional cylinder actuator. As the overall system dynamics are highly nonlinear and not well defined, a sliding mode control (SMC) strategy is chosen for the control action. In order to improve the tracking performance, an SMC strategy with an integral action (SMCI) is also implemented. The control algorithms are experimentally applied on the pneumatic muscle and the cylinder actuator, for the purposes of position tracking. The robustness of the systems are verified and compared by varying the applied loads.



Actuators ◽  
2020 ◽  
Vol 9 (4) ◽  
pp. 134
Author(s):  
Wei Zhao ◽  
Aiguo Song

The pneumatic muscle actuator (PMA) has been widely applied in the researches of rehabilitation robotic devices for its high power to weight ratio and intrinsic compliance in the past decade. However, the high nonlinearity and hysteresis behavior of PMA limit its practical application. Hence, the control strategy plays an important role in improving the performance of PMA for the effectiveness of rehabilitation devices. In this paper, a PMA-based knee exoskeleton based on ergonomics is proposed. Based on the designed knee exoskeleton, a novel proxy-based sliding mode control (PSMC) is introduced to obtain the accurate trajectory tracking. Compared with conventional control approaches, this new PSMC can obtain better performance for the designed PMA-based exoskeleton. Experimental results indicate good tracking performance of this controller, which provides a good foundation for the further development of assist-as-needed training strategies in gait rehabilitation.



Complexity ◽  
2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Jun Zhong ◽  
Xu Zhou ◽  
Minzhou Luo

Pneumatic muscle actuators (PMAs) own excellent compliance and a high power-to-weight ratio and have been widely used in bionic robots and rehabilitated robots. However, the high nonlinear characteristics of PMAs due to inherent construction and pneumatic driving principle bring great challenges in applications acquired accurately modeling and controlling. To tackle the tricky problem, a single PMA mass setup is constructed, and a back propagation neural network (BPNN) is employed to identify the dynamics of the setup. An offline model is built up using sampled data, and online modifications are performed to further improve the quality of the model. An adaptive controller based on BPNN is designed using gradient descent information of the built-up model. Experiments of identifying the PMA setup using BPNN and position tracking by adaptive BPNN controller are performed, and results demonstrate the good capacity in accurate controlling of the PMA setup.





2013 ◽  
Vol 8 (1-2) ◽  
pp. 70-76
Author(s):  
József Sárosi ◽  
Zoltán Fabulya

The newest and most promising type of pneumatic actuators is the pneumatic artificial muscle (PAM). Different designs have been developed, but the McKibben muscle is the most popular and is made commercially available by different companies (e. g. Fluidic Muscle manufactured by Festo Company and Shadow Air Muscle manufactured by Shadow Robot Company). Pneumatic artificial muscles have a wide range of use in industrial and medical fields. There are a lot of advantages of these muscles like the high strength, good power-weight ratio, low price, little maintenance needed, great compliance, compactness, inherent safety and usage in rough environments. The main disadvantage is that their dynamic behaviour is highly nonlinear. The most often mentioned characteristic of PAMs is the force as a function of pressure and contraction. In this paper the newest function approximations for the force generated by Fluidic Muscles are investigated in MS Excel.



Author(s):  
Mohammad Sheikh Sofla ◽  
Mohammad Zareinejad

Pneumatic muscle actuators (PMAs) are frequently used in a wide variety of biorobotic applications, such as robotic orthoses and wearable exoskeletons, due to their high power/weight ratio and significant compliance. However, the asymmetric hysteresis nonlinearity reduces their fidelity and cause difficulties in the accurate control procedure. In this paper, Bouc–Wen hysteresis model is modified to describe the asymmetric force/length hysteresis of the PMA. The effect of muscle length on hysteretic restoring force is considered in this modified model and experimental results show that the proposed model has a better performance to characterize the asymmetric hysteresis loop of pneumatic muscles. The nonlinear pressure/force model of these actuators also is modeled precisely and its performance is experimentally verified for different muscle lengths.



Actuators ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 35
Author(s):  
Yu Cao ◽  
Zhongzheng Fu ◽  
Mengshi Zhang ◽  
Jian Huang

This paper presents a tracking control method for pneumatic muscle actuators (PMAs). Considering that the PMA platform only feedbacks position, and the velocity and disturbances cannot be observed directly, we use the extended-state-observer (ESO) for simultaneously estimating the system states and disturbances by using measurable variables. Integrated with the ESO, a super twisting controller (STC) is design based on estimated states to realize the high-precision tracking. According to the Lyapunov theorem, the stability of the closed-loop system is ensured. Simulation and experimental studies are conducted, and the results show the convergence of the ESO and the effectiveness of the proposed method.



2013 ◽  
Vol 460 ◽  
pp. 1-12 ◽  
Author(s):  
Alexander Hošovský ◽  
Kamil Židek

Pneumatic artificial muscles belong to a category of nonconventional pneumatic actuators that are distinctive for their high power/weight ratio, simple construction and low price and maintenance costs. As such, pneumatic artificial muscles represent an alternative type of pneumatic actuator that could replace the traditional ones in certain applications. Due to their specific construction, PAM-based systems have nonlinear characteristics which make it more difficult to design a control system with good performance. In the paper, a gray-box model (basically analytical but with certain experimental parts) of the one degree-of-freedom PAM-based actuator is derived. This model interconnects the description of pneumatic and mechanical part of the system through a set of several nonlinear differential equations and its main purpose is the design of intelligent control system in simulation environment. The model is validated in both open-loop and closed-loop mode using the measurements on real plant and the results confirm that model performance is in good agreement with the performance of real actuator.



Sign in / Sign up

Export Citation Format

Share Document