Optimization Design of Vibration and Shock Isolation System

Author(s):  
Cun-Sheng Zhao ◽  
Shi-Jian Zhu ◽  
Zhen-Zhong Zhang

The combination optimization design problem of vibration isolation and shock resistance system is studied in consideration of acoustical concealment performance and lifeforce of ships. The weakness of design method based on continuity is pointed out and combination optimal design method is brought forward. Then the limiting performance of shock isolation system is analyzed and two realization methods are discussed. One method is to adopt linear stiffness component with large damping. The other method is to use multiple linear stiffness components without damping. Amplitude of steady excitation is much smaller than that of shock input during experiment. Experimental results showed that the optimal loss factor is still 0.4 when the stiffness of shock bumper is much larger than that of vibration isolator, just the same with that suffered from only shock loads. Experimental results also showed that limiting performance can be achieved by configuration optimal design using multiple linear components. The two discussed methods can be used to direct engineering application.

2006 ◽  
Vol 324-325 ◽  
pp. 783-786
Author(s):  
Cun Sheng Zhao ◽  
Shi Jian Zhu

The optimization design problem of vibration isolation and shock resistance system is studied in consideration of acoustical concealment performance and life-force of ships. The weakness of design method based on continuity is pointed out and combination optimal design method is brought forward. Then the limiting performance of shock isolation system is analyzed and two realization methods are discussed. One method is to adopt linear stiffness component with large damping. The other method is to use multiple linear stiffness components without damping. Simulation results showed that the optimal loss factor is still 0.4 when the stiffness of shock bumper is much larger than that of vibration isolator, just the same with that suffering from only shock loads. Simulation results also showed that limiting performance can be achieved by configuration optimal design using multiple linear components. The two discussed methods can be used to direct engineering application.


Author(s):  
Wei-Min Mao ◽  
Shi-Jian Zhu ◽  
Hui-Ming Jiang

This article analyzes the process to design hybrid vibration isolation system on flexible foundation. The dynamic model of a hybrid vibration isolation system on flexible foundation is build and the character of power flow transmission is analyzed by sub-system structure impedance synthesis technique and four poles parameter method. The global sensitivity analysis with the Sobol’ method is used to study the global sensitivity behavior of the hybrid vibration isolation system. The multi-objective optimization design method of hybrid vibration isolation system is studied and the mathematic optimization model has been built. Gene algorithm has been used to solve the global optimization problem, and the numerical simulation is carried out.


2010 ◽  
Vol 26-28 ◽  
pp. 1204-1210
Author(s):  
Zheng Tao Yan ◽  
Hui Zheng ◽  
Xue Tao Weng ◽  
Cun Sheng Zhao

Against the hybrid vibration isolation system process design problems, we proposed a hybrid optimization design method for vibration isolation system. Firstly, through investigating the rated operating characteristics of mechanical devices, we summarized the isolation devices effectiveness in the working band as an optimizing objective excitation function and extracted the multi-island algorithm advantage in multi-objective optimization field. Then using iSIGHT and Matlab to implement joint optimization, we got the optimal solution set of the passive vibration isolation parameters. Finally, we realized the system multi-objective control by the optimal control method, and achieved a better vibration isolation performance. This method puts forward a new idea for the succeeding hybrid vibration isolation system design effort.


2021 ◽  
Vol 11 (7) ◽  
pp. 3017
Author(s):  
Qiang Gao ◽  
Siyu Gao ◽  
Lihua Lu ◽  
Min Zhu ◽  
Feihu Zhang

The fluid–structure interaction (FSI) effect has a significant impact on the static and dynamic performance of aerostatic spindles, which should be fully considered when developing a new product. To enhance the overall performance of aerostatic spindles, a two-round optimization design method for aerostatic spindles considering the FSI effect is proposed in this article. An aerostatic spindle is optimized to elaborate the design procedure of the proposed method. In the first-round design, the geometrical parameters of the aerostatic bearing were optimized to improve its stiffness. Then, the key structural dimension of the aerostatic spindle is optimized in the second-round design to improve the natural frequency of the spindle. Finally, optimal design parameters are acquired and experimentally verified. This research guides the optimal design of aerostatic spindles considering the FSI effect.


2002 ◽  
Vol 124 (2) ◽  
pp. 278-285 ◽  
Author(s):  
Gang Liu ◽  
Zhongqin Lin ◽  
Youxia Bao

In the tooling design of autobody cover panels, design of drawbead will affect the distribution of drawing restraining force along mouth of dies and the relative flowing velocity of the blank, and consequently, will affect the distributions of strain and thickness in a formed part. Therefore, reasonable design of drawbead is the key point of cover panels’ forming quality. An optimization design method of drawbead, using one improved hybrid optimization algorithm combined with FEM software, is proposed in this paper. First, we used this method to design the distribution of drawbead restraining force along the mouth of a die, then the actual type and geometrical parameters of drawbead could be obtained according to an improved drawbead restraining force model and the improved hybrid optimization algorithm. This optimization method of drawbead was used in designing drawing tools of an actual autobody cover panel, and an optimized drawbead design plan has been obtained, by which deformation redundancy was increased from 0% under uniform drawbead control to 10%. Plastic strain of all area of formed part was larger than 2% and the minimum flange width was larger than 10 mm. Therefore, not only better formability and high dent resistance were obtained, but also fine cutting contour line and high assembly quality could be obtained. An actual drawing part has been formed using the optimized drawbead, and the experimental results were compared with the simulating results in order to verify the validity of the optimized design plan. Good agreement of thickness on critical areas between experimental results and simulation results proves that the optimization design method of drawbead could be successfully applied in designing actual tools of autobody cover panels.


2012 ◽  
Vol 594-597 ◽  
pp. 795-799
Author(s):  
Gui Tao Chen ◽  
De Min Wei

A displacement-based optimization design method of RC structure was proposed by combining direct displacement-based design method with nonlinear programming technique. To avert the influence of target displacement, the stationary constraint displacement was presented, and the target displacement can be updated during the optimal design process. Principle of virtual work and Gaussian integral method was employed to simplify the explicit relationship between horizontal displacement and the section dimension. Comparison analysis of the local optimal results corresponding to different displacement shapes was conducted to achieve global optimal design. The numerical tests presented demonstrate the computational advantages of the discussed methods and suggesting that the proposed method is a reliably and efficiently tool for displacement-based optimal design.


Author(s):  
Chen Pan ◽  
Wei Qiang ◽  
Liu Zhizhong ◽  
Wang Guan

Abstract The response of ship equipment under non-contact underwater explosion shock loading was one of the main loadings of equipment. In order to cut down mechanical noise caused by mechanical equipment, vibration isolation measures, such as floating raft, vibration isolation, were widely used on noise mechanical equipments in acoustical stealth of ship, vibration isolation can reduce the vibration transfer to install base effectively, while the anti-shock resistance of vibration isolation and the equipment was important synchronously, as for the response of the equipment on vibration isolation, especially the actual response of the vibration isolation with piping system under shock loading. In this paper, the research on the response of vibration isolation, equipment, flexible piping and piping under underwater explosion shock loading were considered together, and the response of vibration isolation under shock load was analyzed with different piping arrangement. Found that the piping system has a significant impact on the response of the equipment under horizontal impact, but almost all equipments were assessed in experiment without considering the piping system. With the precondition of the effect of vibration isolation, a more rigid flexible pipe can be taken was benefit to the anti-shock resistance of vibration isolation.


2014 ◽  
Vol 686 ◽  
pp. 529-534
Author(s):  
Jian Xin Xie ◽  
Xiao Le Wang ◽  
Chao Liu

In this study, the engine suspension system was optimized for making the vibration between engine and car body minimized, and also the optimization was simulated using software Adams. The purpose of this study was to research the vibration isolation of the engine mounting system and implement multi-objective optimization for the intrinsic frequency. In this paper, the optimization was implemented in two ways: (1) the intrinsic frequency was optimized by reasonably allocating it: (2) the intrinsic frequency was optimized using energy decoupling. The optimized intrinsic frequencies were simulated using software Adams and then the simulation results were compared. The simulation results showed that the optimized energy distribution was almost up to 90% and the decoupling degree was greatly improved by comparing the initial data, proving the optimized data played a greater effect on engine vibration isolation and further verifying the feasibility of optimization design method.


2013 ◽  
Vol 395-396 ◽  
pp. 1206-1211 ◽  
Author(s):  
Yang Li ◽  
Zhong Lei Wang ◽  
Xiao Li ◽  
Gang Cheng

For the difficulty of calculating the size of the Pre-Manufactured hole of flanging, the formula was derived by using the theory of equal line length and the theory of equal area. And the formula was verified by finite element simulation. Due to theoretical formula has certain error, the optimal design method based on interpolation was put forward and optimization design the size of the Pre-Manufactured hole of flanging. Engineering example shows that this optimization design method is accuracy and convergence speed, and it can quickly calculate the the size of the Pre-Manufactured hole of flanging.


Sign in / Sign up

Export Citation Format

Share Document