scholarly journals Residual Stresses in Passenger Car Wheels

Author(s):  
Shuangqin Liu ◽  
Benjamin Perlman ◽  
Jeffrey Gordon

Knowledge of the residual stress state in wheels resulting from manufacturing and subsequent service loading is useful for several practical reasons. The ability to estimate residual stress levels permits the tuning of manufacturing processes to control the magnitude and distribution of these stresses in new wheels in order to achieve safe performance in service. Similarly, understanding the redistribution of residual stresses following application of service loads (wheel/rail contact and thermal stresses) is crucial to avoid operating conditions which may lead to premature wheel failure. Axisymmetric (2-dimensional) analyses are typically performed in order to conduct manufacturing process simulations since these processes affect the entire wheel in a circumferentially uniform sense. Generally, analyses involving service loading have sought to identify the "shakedown state" at which the residual stress distribution stabilizes after some number of loading cycles. In order to properly account for service loads, 3-dimensional models are required since contact and brake shoe thermal loading are not axisymmetric. Since the as-manufactured residual stress distribution must be considered in a service loading simulation, 3-dimensional modeling of this process is required. This paper presents a preliminary comparison of 2- and 3-dimensional modeling of the wheel heat treatment process. Except for the increased computational time required for the 3-dimensional analysis, the results agree favorably. The 3-dimensional model is used to simulate service loads involving wheel-rail contact loading representative of a typical passenger car. The model is exercised with a variety of material models for comparison with previous work. Results are presented for multiple loading scenarios and shakedown stress states are established for a range of applied loads.

2019 ◽  
Vol 15 (3) ◽  
pp. 599-616 ◽  
Author(s):  
Dibakor Boruah ◽  
Xiang Zhang ◽  
Matthew Doré

PurposeThe purpose of this paper is to develop a simple analytical model for predicting the through-thickness distribution of residual stresses in a cold spray (CS) deposit-substrate assembly.Design/methodology/approachLayer-by-layer build-up of residual stresses induced by both the peening dominant and thermal mismatch dominant CS processes, taking into account the force and moment equilibrium requirements. The proposed model has been validated with the neutron diffraction measurements, taken from the published literature for different combinations of deposit-substrate assemblies comprising Cu, Mg, Ti, Al and Al alloys.FindingsThrough a parametric study, the influence of geometrical variables (number of layers, substrate height and individual layer height) on the through-thickness residual stress distribution and magnitude are elucidated. Both the number of deposited layers and substrate height affect residual stress magnitude, whereas the individual layer height has little effect. A good agreement has been achieved between the experimentally measured stress distributions and predictions by the proposed model.Originality/valueThe proposed model provides a more thorough explanation of residual stress development mechanisms by the CS process along with mathematical representation. Comparing to existing analytical and finite element methods, it provides a quicker estimation of the residual stress distribution and magnitude. This paper provides comparisons and contrast of the two different residual stress mechanisms: the peening dominant and the thermal mismatch dominant. The proposed model allows parametric studies of geometric variables, and can potentially contribute to CS process optimisation aiming at residual stress control.


1973 ◽  
Vol 95 (4) ◽  
pp. 238-242 ◽  
Author(s):  
S. Vaidyanathan ◽  
H. Weiss ◽  
I. Finnie

The residual stress distribution for a circumferential weld between cylinders was obtained in a prior publication for a full penetration, single pass weld with no variation of alloy content across the weld. In the present work the approach is extended to cover a wider variety of weld conditions. It is shown that the effects of multipass welds, partial penetration welds, and welds with filler metal differing greatly in properties from the base metal can approximately be taken into account. Experimental results are presented to support the proposed method of analysis.


Metals ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1234
Author(s):  
Alexander Ulbricht ◽  
Simon J. Altenburg ◽  
Maximilian Sprengel ◽  
Konstantin Sommer ◽  
Gunther Mohr ◽  
...  

Rapid cooling rates and steep temperature gradients are characteristic of additively manufactured parts and important factors for the residual stress formation. This study examined the influence of heat accumulation on the distribution of residual stress in two prisms produced by Laser Powder Bed Fusion (LPBF) of austenitic stainless steel 316L. The layers of the prisms were exposed using two different border fill scan strategies: one scanned from the centre to the perimeter and the other from the perimeter to the centre. The goal was to reveal the effect of different heat inputs on samples featuring the same solidification shrinkage. Residual stress was characterised in one plane perpendicular to the building direction at the mid height using Neutron and Lab X-ray diffraction. Thermography data obtained during the build process were analysed in order to correlate the cooling rates and apparent surface temperatures with the residual stress results. Optical microscopy and micro computed tomography were used to correlate defect populations with the residual stress distribution. The two scanning strategies led to residual stress distributions that were typical for additively manufactured components: compressive stresses in the bulk and tensile stresses at the surface. However, due to the different heat accumulation, the maximum residual stress levels differed. We concluded that solidification shrinkage plays a major role in determining the shape of the residual stress distribution, while the temperature gradient mechanism appears to determine the magnitude of peak residual stresses.


2014 ◽  
Vol 996 ◽  
pp. 506-511
Author(s):  
Intissar Frih ◽  
Pierre Antoine Adragna ◽  
Guillaume Montay

This paper presents a study on the application of the finite element methods to predict the influence of a defect on the residual stress distribution in a T-welded structure. A defect is introduced in a numerical model firstly without residual stress to see its impact (size and position) on the stress distribution. Secondly the most critical defect (determined previously) is simulated with a residual stress gradient. The obtained results are useful for computation stress concentration factor due to weld residual stresses.


1996 ◽  
Vol 118 (2) ◽  
pp. 217-223 ◽  
Author(s):  
K. J. Kang ◽  
S. Y. Seol

A method which we describe as the “successive cracking method” for measuring residual stresses in a circular ring is presented. In this method, the residual stresses are evaluated using a fracture mechanics approach. The strains measured at a point on the outer edge of the ring as a crack is introduced and extended from the edge are used to deduce the residual stress distribution in the uncracked ring. Finite element analysis is carried out to examine the validity of the theoretical derivation. Experiments to measure the residual stresses in a steel ring specimen are done by the successive cracking method. For comparison purposes, the experimental results using the sectioning method are presented as well. The successive cracking method is shown to be valid, simple, and effective for measuring the two-dimensional residual stress distribution in an axisymmetric member.


2017 ◽  
Vol 905 ◽  
pp. 31-39 ◽  
Author(s):  
Jeremy S. Robinson ◽  
Christopher E. Truman ◽  
Thilo Pirling ◽  
Tobias Panzner

The residual stresses in heat treated 7075 aluminium alloy blocks have been characterised using two neutron diffraction strain scanning instruments. The influence of uniaxial cold compression (1-10%) on relieving the residual stress has been determined. Increasing the magnitude of cold compression from 1 to 10% has been shown to have a beneficial effect on the residual stress distribution by reducing the range between the maximum and minimum residual stresses. The effect of over aging 7075 on residual stress has also been characterised using neutron diffraction and this was found to reduce the residual stress by 25-40%. A relationship between {311} peaks widths and amount of cold compression was also observed.


2011 ◽  
Vol 681 ◽  
pp. 296-302 ◽  
Author(s):  
Neila Hfaiedh ◽  
P. Peyre ◽  
I. Popa ◽  
Vincent Vignal ◽  
Wilfrid Seiler ◽  
...  

Laser shock peening (LSP) is an innovative surface treatment technique successfully applied to improving fatigue performance of metallic material. The specific characteristic of (LSP) is the generation of a low work-hardening and a deep compressive residual stresses mechanically produced by a laser-induced shock wave propagating in the material. The aim of this study is to analyse the residual stress distribution induced by laser peening in 2050-T8 aluminium alloy experimentally by the X-ray diffraction technique (method sin2Y) and numerically, by a finite element numerical modelling. A specific focus was put on the residual stress distribution along the surface of the impacted material.


2013 ◽  
Vol 768-769 ◽  
pp. 79-86 ◽  
Author(s):  
Horst Brünnet ◽  
Dirk Bähre ◽  
Theo J. Rickert ◽  
Dominik Dapprich

The incremental hole-drilling method is a well-known mechanical measurement procedure for the analysis of residual stresses. The newly developed PRISM® technology by Stresstech Group measures stress relaxation optically using electronic speckle pattern interferometry (ESPI). In case of autofrettaged components, the large amount of compressive residual stresses and the radius of the pressurized bores can be challenging for the measurement system. This research discusses the applicability of the measurement principle for autofrettaged cylinders made of steel AISI 4140. The residual stresses are measured after AF and after subsequent boring and reaming. The experimental residual stress depth profiles are compared to numerically acquired results from a finite element analysis (FEA) with the software code ABAQUS. Sample preparation will be considered as the parts have to be sectioned in half in order to access the measurement position. Following this, the influence of the boring and reaming operation on the final residual stress distribution as well as the accuracy of the presented measurement setup will be discussed. Finally, the usability of the FEA method in early design stages is discussed in order to predict the final residual stress distribution after AF and a following post-machining operation.


Author(s):  
Balaji Sadasivam ◽  
Alpay Hizal ◽  
Dwayne Arola

Recent advances in abrasive waterjet (AWJ) technology have resulted in new processes for surface treatment that are capable of introducing compressive residual stresses with simultaneous changes in the surface texture. While the surface residual stress resulting from AWJ peening has been examined, the subsurface residual stress field resulting from this process has not been evaluated. In the present investigation, the subsurface residual stress distribution resulting from AWJ peening of Ti6Al4V and ASTM A228 steel were studied. Treatments were conducted with the targets subjected to an elastic prestress ranging from 0 to 75% of the substrate yield strength. The surface residual stress ranged from 680 to 1487 MPa for Ti6Al4V and 720 to 1554 MPa for ASTM A228 steel; the depth ranged from 265 to 370 μm for Ti6Al4V and 550 to 680 μm for ASTM A228 steel. Results showed that elastic prestress may be used to increase the surface residual stress in AWJ peened components by up to 100%.


Sign in / Sign up

Export Citation Format

Share Document