Rapid, Traditional, and Virtual: Prototypes in the Undergraduate Curriculum

Author(s):  
Joel Lenoir

The Mechanical Engineering (ME) faculty at Western Kentucky University (WKU) has developed a curricular plan to balance the strengths and weaknesses of three types of design prototyping: rapid, traditional, and virtual. Rapid prototyping refers to any of the modern 3D printing tools, such as Fused Deposition Modeling. Traditional prototyping has been defined as primarily machined parts, ranging from simple fabricated parts to CNC machined components. Virtual prototyping is used to describe designs that exist only in the digital domain as parts and assemblies in a 3D drawing program. Over the entire four years of the WKU ME curriculum, students work on a range of projects that allow them to utilize all three types of prototypes. The ME Freshman Experience allows students to blend the study of design methodologies with basic instruction in machine tools. Each student designs, builds, and tests their own air-powered steam engine. Sophomore Design finds the students working not only on a virtual design project, but also a more extended design-build-test project focused on experimentation. Junior design blends an externally sponsored virtual design along with the ASME Regional Student Competition (RSC). As with the RSC, Capstone Design in the senior year allows students to use a balance of all three types of prototyping as they judge appropriate and/or requested by their external sponsor. Design projects utilizing rapid and traditional prototyping resources require a large commitment by faculty and staff for support. A balance between time, resources, and level of student effort must be maintained, but careful planning can lead to improved student design performance. Virtual prototyping can appear to be easier to manage, but student expertise in creating fidelity between digital drawings and the desired physical parts varies widely. The deficiencies can show up when creating assemblies, but students can often mask the errors. The most important aspect of all these prototyping activities is the need for continual interaction between students, faculty, and staff. Students do not usually possess an innate project management ability, but experience has shown that strong project management skills are necessary for successful prototyping activities. All persons involved in the efforts must understand the prototyping facilities available, the time and resources necessary to utilize them effectively, and the reasonable expectations of the course effort. Students can gain understanding through repeated course exposure, but faculty must present a consistent voice with respect to the technologies available.

2016 ◽  
Vol 3 (10) ◽  
pp. 3660-3665 ◽  
Author(s):  
Manu Srivastava ◽  
Sachin Maheshwari ◽  
T.K. Kundra ◽  
Sandeep Rathee ◽  
Ramkrishna Yashaswi ◽  
...  

Author(s):  
Kathryn B. Higgins ◽  
Noshir A. Langrana

Abstract Layered Manufacturing is a valuable tool for efficient and concurrent engineering. In order to maximize its effectiveness, a web-based user-friendly virtual design and fabrication system has been developed using a systematic knowledge-based approach. The large amount of information available on layered manufacturing has been organized into a modular format. Tables and appendices organize hardware and software information for the different methods. A linked dictionary defines unfamiliar terminology. Java applets allow users to create an individualized engineering specification for their part. Recommendations regarding machines and materials are made based on this input. Tutorials guide the LM build process from initial design through selection of build parameters. This comprehensive knowledge base will expose the individual to various rapid prototyping concepts, and should reduce the build iterations required to successfully build parts. The web pages concentrate mainly on stereolithography and fused deposition modeling, but provide introduction to other technologies. Due to the quickly developing nature of the RP industry, information changes periodically. With the modular structure, as new materials and technologies become available, their information can be easily added to the existing knowledge base. Industry feedback on the web site development is facilitated via an online guestbook.


Author(s):  
Michael A. Luzuriaga ◽  
Danielle R. Berry ◽  
John C. Reagan ◽  
Ronald A. Smaldone ◽  
Jeremiah J. Gassensmith

Biodegradable polymer microneedle (MN) arrays are an emerging class of transdermal drug delivery devices that promise a painless and sanitary alternative to syringes; however, prototyping bespoke needle architectures is expensive and requires production of new master templates. Here, we present a new microfabrication technique for MNs using fused deposition modeling (FDM) 3D printing using polylactic acid, an FDA approved, renewable, biodegradable, thermoplastic material. We show how this natural degradability can be exploited to overcome a key challenge of FDM 3D printing, in particular the low resolution of these printers. We improved the feature size of the printed parts significantly by developing a post fabrication chemical etching protocol, which allowed us to access tip sizes as small as 1 μm. With 3D modeling software, various MN shapes were designed and printed rapidly with custom needle density, length, and shape. Scanning electron microscopy confirmed that our method resulted in needle tip sizes in the range of 1 – 55 µm, which could successfully penetrate and break off into porcine skin. We have also shown that these MNs have comparable mechanical strengths to currently fabricated MNs and we further demonstrated how the swellability of PLA can be exploited to load small molecule drugs and how its degradability in skin can release those small molecules over time.


2018 ◽  
Vol 1 (1) ◽  
pp. 1-11 ◽  
Author(s):  
Kamaljit Singh Boparai ◽  
Rupinder Singh

This study highlights the thermal characterization of ABS-Graphene blended three dimensional (3D) printed functional prototypes by fused deposition modeling (FDM) process. These functional prototypes have some applications as electro-chemical energy storage devices (EESD). Initially, the suitability of ABS-Graphene composite material for FDM applications has been examined by melt flow index (MFI) test. After establishing MFI, the feedstock filament for FDM has been prepared by an extrusion process. The fabricated filament has been used for printing 3D functional prototypes for printing of in-house EESD. The differential scanning calorimeter (DSC) analysis was conducted to understand the effect on glass transition temperature with the inclusion of Graphene (Gr) particles. It has been observed that the reinforced Gr particles act as a thermal reservoir (sink) and enhances its thermal/electrical conductivity. Also, FT-IR spectra realized the structural changes with the inclusion of Gr in ABS matrix. The results are supported by scanning electron microscopy (SEM) based micrographs for understanding the morphological changes.


2019 ◽  
Vol 25 (11) ◽  
pp. 1249-1264 ◽  
Author(s):  
Amoljit Singh Gill ◽  
Parneet Kaur Deol ◽  
Indu Pal Kaur

Background: Solid free forming (SFF) technique also called additive manufacturing process is immensely popular for biofabrication owing to its high accuracy, precision and reproducibility. Method: SFF techniques like stereolithography, selective laser sintering, fused deposition modeling, extrusion printing, and inkjet printing create three dimension (3D) structures by layer by layer processing of the material. To achieve desirable results, selection of the appropriate technique is an important aspect and it is based on the nature of biomaterial or bioink to be processed. Result & Conclusion: Alginate is a commonly employed bioink in biofabrication process, attributable to its nontoxic, biodegradable and biocompatible nature; low cost; and tendency to form hydrogel under mild conditions. Furthermore, control on its rheological properties like viscosity and shear thinning, makes this natural anionic polymer an appropriate candidate for many of the SFF techniques. It is endeavoured in the present review to highlight the status of alginate as bioink in various SFF techniques.


2019 ◽  
Vol 24 (42) ◽  
pp. 4991-5008 ◽  
Author(s):  
Mohammed S. Algahtani ◽  
Abdul Aleem Mohammed ◽  
Javed Ahmad

Three-dimensional printing (3DP) has a significant impact on organ transplant, cosmetic surgery, surgical planning, prosthetics and other medical fields. Recently, 3 DP attracted the attention as a promising method for the production of small-scale drug production. The knowledge expansion about the population differences in metabolism and genetics grows the need for personalised medicine substantially. In personalised medicine, the patient receives a tailored dose and the release profile is based on his pharmacokinetics data. 3 DP is expected to be one of the leading solutions for the personalisation of the drug dispensing. This technology can fabricate a drug-device with complicated geometries and fillings to obtain the needed drug release profile. The extrusionbased 3 DP is the most explored method for investigating the feasibility of the technology to produce a novel dosage form with properties that are difficult to achieve using the conventional industrial methods. Extrusionbased 3 DP is divided into two techniques, the semi-solid extrusion (SSE) and the fused deposition modeling (FDM). This review aims to explain the extrusion principles behind the two techniques and discuss their capabilities to fabricate novel dosage forms. The advantages and limitations observed through the application of SSE and FDM for fabrication of drug dosage forms were discussed in this review. Further exploration and development are required to implement this technology in the healthcare frontline for more effective and personalised treatment.


Sign in / Sign up

Export Citation Format

Share Document