An AFM-Based Nanomanipulation Model Describing the Atomic Two Dimensional Stick-Slip Behavior

Author(s):  
Fakhreddine Landolsi ◽  
Fathi H. Ghorbel ◽  
James B. Dabney

A new AFM-based nanomanipulation model describing the relevant physics and dynamics at the nanoscale is presented. The nanomanipulation scheme consists of integrated subsystems that are identified in a modular approach. The model subsystems define the AFM cantilever-sample dynamics, the AFM tip-sample interactions, the contact mechanics and the friction between the sample and the substrate. The coupling between these different subsystems is emphasized. The main contribution of the proposed nanomanipulation model is the use of a new 2D dynamic friction model based on a generalized bristle interpretation of one asperity contact. The efficacy of the proposed model to reproduce experimental data is demonstrated via numerical simulations. In fact, the model is shown to describe the 2D stick-slip behavior with the substrate lattice periodicity. The proposed nanomanipulation model facilitates the improvement and extension of each subsystem to further take into account the complex interactions at the nanoscale.

Author(s):  
Fakhreddine Landolsi ◽  
Fathi H. Ghorbel ◽  
Jun Lou ◽  
Hao Lu ◽  
Yuekai Sun

Friction and system models are fundamentally coupled. In fact, the success of models in predicting experimental results depends highly on the modeling of friction. This is true at the atomic scale where the nanoscale friction depends on a large set of parameters. This paper presents a novel nanoscale friction model based on the bristle interpretation of single asperity contact. This interpretation is adopted after a review of dynamic friction models representing stick-slip motion in macrotribology literature. The proposed model uses state variables and introduces a generalized bristle deflection. Jumping mechanisms are implemented in order to take into account the instantaneous jumps observed during 2D stick-slip phenomena. The model is dynamic and Lipchitz, which makes it suitable for future control implementation. Friction force microscope scans of a muscovite mica sample were conducted in order to determine numerical values of the different model parameters. The simulated and experimental results are then compared in order to show the efficacy of the proposed model.


2008 ◽  
Vol 47-50 ◽  
pp. 246-249
Author(s):  
Min Gyu Jang ◽  
Chul Hee Lee ◽  
Seung Bok Choi

In this paper, a stick-slip compensation for the micro-positioning is presented using the statistical rough surface contact model. As for the micro-positioning structure, PZT (lead(Pb) zirconia(Zr) Titanate(Ti)) actuator is used to drive the load for precise positioning with its high resolution incorporating with the PID (Proportional Integral Derivative) control algorithm. Since the stick-slip characteristics for the micro structures are highly nonlinear and complicated, it is necessary to incorporate more detailed stick-slip model for the applications involving the high precision motion control. Thus, the elastic-plastic static friction model is used for the stick-slip compensation considering the elastic-plastic asperity contact in the rough surfaces statistically. Mathematical model of the system for the positioning apparatus was derived from the dynamic behaviors of structural parts. Since the conventional piezoelectric actuator generates the short stroke, a bridge-type flexural hinge mechanism is introduced to amplify the linear motion range. Using the proposed smart structure, simulations under the representative positioning motion were conducted to demonstrate the micro-positioning under the stick-slip friction.


2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Qiang Sun ◽  
Yuebin Wu ◽  
Ying Xu ◽  
Liang Chen ◽  
Tae Uk Jang

Accurate simulation of cavitating flows in pipeline systems is important for cost-effective surge protection. However, this is still a challenge due to the complex nature of the problem. This paper presents a numerical model that combines the discrete vapor cavity model (DVCM) with the quasi-two-dimensional (quasi-2D) friction model to simulate transient cavitating flows in pipeline systems. The proposed model is solved by the method of characteristics (MOC), and the performance is investigated through a numerical case study formulated based on a laboratory pipeline reported in the literature. The results obtained by the proposed model are compared with those calculated by the classic one-dimensional (1D) friction model with the DVCM and the corresponding experimental results provided by the literature, respectively. The comparison shows that the pressure peak, waveform, and phase of pressure pulsations predicted by the proposed model are closer to the experimental results than those obtained by the classic 1D model. This demonstrates that the proposed model that combines the quasi-2D friction model with the DVCM has provided a solution to more accurately simulate transient cavitating flows in pipeline systems.


Author(s):  
Hongbiao Xiang ◽  
Mitja Trkov ◽  
Kaiyan Yu ◽  
Jingang Yi

Modeling of the soft-solid frictional interactions plays an important role in many robotic and mechatronic systems design. We present a new model that characterizes the two-dimensional (2D) soft-solid contact interactions. The new computational approach integrates the LuGre dynamic friction model with the beam network structure of the soft-solid contact. The LuGre dynamic friction model uses the bristle deformation to capture the friction characteristics and dynamics, while the beam network structure represents the elastic contact interactions. We also present a model simplification to facilitate analysis of model properties. The model prediction and validation results are demonstrated with the experiments. The experimental results confirm the effectiveness of the modeling development. We further use the model to compute the influence of the normal load and sliding velocity on the stick-slip interaction patterns and properties. These results explain and provide analytical foundation for the reported experiments in the literature.


Author(s):  
Shangguan Bo ◽  
Yu Feilong ◽  
Duan Jingyao ◽  
Gao Song ◽  
Xiao Junfeng ◽  
...  

To investigate the friction damping effect of a loosely assembled blade with dovetail root, a fractal contact friction model is proposed to describe the friction force. In the proposed model, the friction contact interface is discretized to a series of friction contact pairs and each of them can experience stick, slip, or separate. Fractal geometry is used to simulate the topography of contact surfaces. The contact stiffness, which is related to the parameters of contact interfaces including normal load, roughness, Young’s modulus, and Poisson’s ratio, is calculated using Hertz contact theory and fractal geometry. The nonlinear vibration response of loosely assembled blade with dovetail root is predicted using the proposed model, the multiharmonic balance method and Newton iterative algorithm. The effect of centrifugal force, friction coefficient and exciting force on the forced response of a loosely assembled blade with dovetail root is studied. The numerical vibration responses are compared to the experimental results. It will verify the reliability of the numerical method and provide theoretical basis for structure design of the loosely assembled blade with dovetail root.


1995 ◽  
Vol 117 (4) ◽  
pp. 667-673 ◽  
Author(s):  
A. Harnoy

An analysis is developed for the time-variable friction during the start-up of a rotor system. The analysis is based on a dynamic friction model that has been developed from the theory of unsteady lubrication and can describe the observed friction characteristics. The model reduces to the Stribeck curve of friction versus steady velocity, and shows hysteresis curves in oscillating velocity. The “Dahl effect” of a presliding displacement before the breakaway is also included. The results indicate that the friction characteristics and energy friction losses, during the start-up, depend on a set of dimensionless parameters that represent the bearing as well as the dynamic system. The study shows that appropriate design and operation can prevent stick-slip friction and minimize wear during start-up.


Author(s):  
André Carvalho Bittencourt ◽  
Svante Gunnarsson

Friction is the result of complex interactions between contacting surfaces in down to a nanoscale perspective. Depending on the application, the different models available are more or less suitable. Static friction models are typically considered to be dependent only on relative speed of interacting surfaces. However, it is known that friction can be affected by other factors than speed. In this paper, the typical friction phenomena and models used in robotics are reviewed. It is shown how such models can be represented as a sum of functions of relevant states which are linear and nonlinear in the parameters, and how the identification method described in Ref. [1] can be used to identify them when all states are measured. The discussion follows with a detailed experimental study of friction in a robot joint under changes of joint angle, load torque, and temperature. Justified by their significance, load torque and temperature are included in an extended static friction model. The proposed model is validated in a wide operating range, considerably improving the prediction performance compared to a standard model.


2003 ◽  
Author(s):  
M. A. Hassan ◽  
D. S. Weaver ◽  
M. A. Dokainish

Heat exchanger tubes are usually loosely supported at intermediate points by plates or flat bars. Flow-induced vibrations result in fretting wear tube damage due to impacting and rubbing of tubes against their supports. Prediction of tube response relies on modelling the nonlinear tube/support interaction. The evaluated response is used to predict the resultant wear damage using experimentally measured wear coefficients. An accurate of prediction of impact forces and the work rate is therefore paramount. The analytical models available assume tube/support contact occurs over a single point. In this paper, a computational algorithm is proposed to describe the tube/support impact considering a finite support width. The new model provides a means of representing tube/support contact as a combination of edge and segmental contact. The proposed model utilizes a distributed contact stiffness to describe the segmental contact. The formulation also incorporates a stick/slip friction model. The model developed is utilized to simulate the dynamics of loosely-supported tubes.


Sign in / Sign up

Export Citation Format

Share Document