Interfacial Heat Transfer During Droplet Impact on a Solid Surface: Comparison of High-Resolution Laser Measurements With Finite-Element Simulations

Author(s):  
Rajneesh Bhardwaj ◽  
Jon P. Longtin ◽  
Daniel Attinger

The objective of this work is to understand the coupling of fluid dynamics and heat transfer during the impact of a millimeter-size water droplet on a flat, solid glass substrate. In this work, a finite-element model is presented which simulates the transient fluid dynamics and heat transfer during the droplet deposition process, considering Laplace forces on the liquid-gas boundary, and the dynamics of wetting. A novel, experimental laser-based method is used to measure temperatures at the solid-liquid interface. This method is based on a thermoreflectance technique and provides unprecedented temporal and spatial resolutions of 1 microsecond and 20 micrometer, respectively. Matching between simulations, temperature measurements and high-speed visualization allows the determination of the interfacial heat transfer coefficient.

Author(s):  
Z M Hu ◽  
J W Brooks ◽  
T A Dean

An investigation of die temperature changes and the heat transfer coefficient during hot forging of titanium alloy has been carried out using experiments and a thermal-plastic coupled finite element analysis. Hot Ti-6A1–4V rings were forged between two heated flat dies made of Inconel alloy IN718. The bottom die was instrumented with high-response thermocouples on its surface and subsurface. The recorded temperatures were analysed and used to determine the interface heat transfer coefficient between the die and the workpiece in conjunction with the thermal-plastic coupled finite element analysis using a reverse algorithm. The coefficients determined were then used in a finite element model for the analysis of the upsetting process and the results produced were in good agreement with the experimental data.


Author(s):  
R. D. Burke ◽  
C. D. Copeland ◽  
T. Duda ◽  
M. A. Rayes-Belmote

One-dimensional wave-action engine models have become an essential tool within engine development including stages of component selection, understanding system interactions, and control strategy development. Simple turbocharger models are seen as a weak link in the accuracy of these simulation tools, and advanced models have been proposed to account for phenomena including heat transfer. In order to run within a full engine code, these models are necessarily simple in structure yet are required to describe a highly complex 3D problem. This paper aims to assess the validity of one of the key assumptions in simple heat transfer models, namely, that the heat transfer between the compressor casing and intake air occurs only after the compression process. Initially, a sensitivity study was conducted on a simple lumped capacity thermal model of a turbocharger. A new partition parameter was introduced αA, which divides the internal wetted area of the compressor housing into pre- and postcompression. The sensitivity of heat fluxes to αA was quantified with respect to the sensitivity to turbine inlet temperature (TIT). At low speeds, the TIT was the dominant effect on compressor efficiency, whereas at high speed αA had a similar influence to TIT. However, modeling of the conduction within the compressor housing using an additional thermal resistance caused changes in heat flows of less than 10%. Three-dimensional computational fluid dynamics (CFD) analysis was undertaken using a number of cases approximating different values of αA. It was seen that when considering a case similar to αA = 0, meaning that heat transfer on the compressor side is considered to occur only after the compression process, significant temperature could build up in the impeller area of the compressor housing, indicating the importance of the precompression heat path. The 3D simulation was used to estimate a realistic value for αA which was suggested to be between 0.15 and 0.3. Using a value of this magnitude in the lumped capacitance model showed that at low speed there would be less than 1% point effect on apparent efficiency which would be negligible compared to the 8% point seen as a result of TIT. In contrast, at high speeds, the impact of αA was similar to that of TIT, both leading to approximately 1% point apparent efficiency error.


Author(s):  
Michael Rose ◽  
Delf Sachau

Abstract Efficiency in high speed mechanism can be further increased by use of lightweight construction. But quite often these structures have the drawback of being susceptible to vibrations. This can be overcome by applying the technology of smart structures. Here distributed actuators and sensors made from piezoceramic (PZT) material are capable to actively reduce the unwelcome vibrations if implemented within a control loop. For the optimal design of such kind of mechanism up-to-date simulation tools have to be developed further. To simulate the dynamic behavior of lightweight structures undergoing large motions the multi-body approach is a suitable tool. The necessary parameters in the equations of motion for the flexible body can be calculated from the output of a finite element code. The large number of variables from the finite element model have to be reduced to only a few generalized coordinates. Therefore a modal reduction is applied in combination with the introduction of a moving frame of reference. Beyond this technique so called active modes are introduced to represent the impact of the active strain by the PZT patches. These active modes combined with natural modes represent the body deformation within the multibody model. As an example the slider/crank mechanism with actively controlled PZT patches on the crank is simulated.


2013 ◽  
Vol 397-400 ◽  
pp. 126-130
Author(s):  
Peng Wang ◽  
Chun Li Lei ◽  
Bao Cheng Zhou ◽  
Wei Ping Zhao

According to the high speed bearing failure problem caused by the high temperature, finite element model of high-speed hybrid ceramic angular contact ball bearing is established in this paper. Quantity of heat and heat transfer coefficient are calculated by using the heat transfer and thermodynamics theory, which are boundary condition for the temperature field simulation analysis of ball bearing. The temperature distribution of bearing is obtained when bearing speed is 12000rad/min. The results can provide a theoretical foundation for lubrication cooling system controlling temperature.


2010 ◽  
Vol 132 (10) ◽  
Author(s):  
R. A. Guha ◽  
N. H. Shear ◽  
M. Papini

The impact and penetration of high speed particles with the human skin is of interest for targeted drug delivery by transdermal powder injection. However, it is often difficult to perform penetration experiments on dermal tissue using micron scale particles. To address this, a finite element model of the impact and penetration of a 2 μm gold particle into the human dermis was developed and calibrated using experiments found in the literature. Using dimensional analysis, the model was linked to a larger scale steel ball-gelatin system in order to extract key material parameters for both systems and perform impact studies. In this manner, an elastic modulus of 2.25 MPa was found for skin, in good agreement with reported values from the literature. Further gelatin experiments were performed with steel, polymethyl methacrylate, titanium, and tungsten carbide balls in order to determine the effects of particle size and density on penetration depth. Both the finite element model and the steel-gelatin experiments were able to predict the penetration behavior that was found by other investigators in the study of the impact of typical particles used for vaccine delivery into the human dermis. It can therefore be concluded that scaled up systems utilizing ballistic gelatins can be used to investigate the performance of transdermal powder injection technology.


Author(s):  
Kevin Darques ◽  
Abdelmounaïm Tounzi ◽  
Yvonnick Le-menach ◽  
Karim Beddek

Purpose This paper aims to go deeper on the analysis of the shaft voltage of large turbogenerators. The main interest of this study is the investigation process developed. Design/methodology/approach The analysis of the shaft voltage because of several defects is based on a two-dimensional (2D) finite element modeling. This 2D finite element model is used to determine the shaft voltage because of eccentricities or rotor short-circuit. Findings Dynamic eccentricities and rotor short circuit do not have an inherent impact on the shaft voltage. Circulating currents in the stator winding because of defects impact the shaft voltage. Originality/value The original value of this paper is the investigation process developed. This study proposes to quantify the impact of a smooth stator and then to explore the contribution of the real stator winding on the shaft voltage.


Sign in / Sign up

Export Citation Format

Share Document