Modeling the Temperature-Dependence of Tertiary Creep Damage of a Directionally Solidified Ni-Base Superalloy

Author(s):  
Calvin M. Stewart ◽  
Erik A. Hogan ◽  
Ali P. Gordon

Directionally solidified (DS) Ni-base superalloys have become a commonly used material in gas turbine components. Controlled solidification during the material manufacturing process leads to a special alignment of the grain boundaries within the material. This alignment results in different material properties dependent on the orientation of the material. When used in gas turbine applications the direction of the first principle stress experienced by a component is aligned with the enhanced grain orientation leading to enhanced impact strength, high temperature creep and fatigue resistance, and improve corrosion resistance compared to off axis orientations. Of particular importance is the creep response of these DS materials. In the current study, the classical Kachanov-Rabotnov model for tertiary creep damage is implemented in a general-purpose finite element analysis (FEA) software. Creep deformation and rupture experiments are conducted on samples from a representative DS Ni-base superalloys tested at temperatures between 649 and 982°C and two orientations (longitudinally- and transversely-oriented). The secondary creep constants are analytically determined from available experimental data in literature. The simulated annealing optimization routine is utilized to determine the tertiary creep constants. Using regression analysis the creep constants are characterized for temperature and stress-dependence. A rupture time estimation model derived from the Kachanov-Rabotnov model is then parametrically exercised and compared with available experimental data.

Author(s):  
Ali P. Gordon ◽  
Sameer Khan ◽  
David W. Nicholson

Both polycrystalline (PC) and directionally-solidified (DS) Ni-base superalloys are commonly applied as turbine materials to primarily withstand creep conditions manifested in either marine-, air- or land-based gas turbines components. The thrust for increased efficiency of these systems, however, translates into the need for these materials to exhibit considerable strength and temperature resistance. This is critical for engine parts that are subjected to high temperature and stress conditions sustained for long periods of time, such as blades, vanes, and combustion pieces. Accurate estimates of stress and deformation histories at notches, curves, and other critical locations of such components are crucial for life prediction and calculation of service intervals. In the current study, the classical Kachanov-Rabotnov model for tertiary creep damage is implemented in a general-purpose finite element analysis (FEA) software. Creep deformation and rupture experiments on samples from two representative Ni-base superalloys (PC and DS) tested at temperatures between 649 and 982°C and two orientations (longitudinally- and transversely-oriented for the DS case only) are applied to extend this damage formulation. The damage model coefficients corresponding to secondary and tertiary creep constants are characterized for temperature and orientation dependence. This updated formulation can be implemented for modeling full-scale parts containing temperature distributions.


Author(s):  
Calvin M. Stewart ◽  
Ali P. Gordon ◽  
Erik A. Hogan ◽  
Ashok Saxena

Creep deformation and rupture experiments are conducted on samples of the Ni-base superalloy directionally solidified GTD-111 tested at temperatures between 649°C and 982°C and two orientations (longitudinally and transversely oriented). The secondary creep constants are analytically determined from creep deformation experiments. The classical Kachanov–Rabotnov model for tertiary creep damage is implemented in a general-purpose finite element analysis (FEA) software. The simulated annealing optimization routine is utilized in conjunction with the FEA implementation to determine the creep damage constants. A comparison of FEA and creep deformation data demonstrates high accuracy. Using regression analysis, the creep constants are characterized for temperature dependence. A rupture prediction model derived from creep damage evolution is compared with rupture experiments.


2011 ◽  
Vol 133 (5) ◽  
Author(s):  
Calvin M. Stewart ◽  
Ali P. Gordon ◽  
Young Wha Ma ◽  
Richard W. Neu

Directionally solidified (DS) Ni-base superalloys are commonly used as gas turbine materials to primarily extend the operational lives of components under high load and temperature. The nature of DS superalloy grain structure facilitates an elongated grain orientation, which exhibits enhanced impact strength, high temperature creep and fatigue resistance, and improved corrosion resistance compared with off-axis orientations. Of concern to turbine designers are the effects of cyclic fatigue, thermal gradients, and potential stress concentrations when dealing with orientation-dependent materials. When coupled with a creep environment, accurate prediction of crack initiation and propagation becomes highly dependent on the quality of the constitutive damage model implemented. This paper describes the development of an improved anisotropic tertiary creep damage model implemented in a general-purpose finite element analysis software. The creep damage formulation is a tensorial extension of a variation in the Kachanov–Rabotnov isotropic tertiary creep damage formulation. The net/effective stress arises from the use of the Rabotnov second-rank symmetric damage tensor. The Hill anisotropic behavior analogy is used to model secondary creep and tertiary creep damage behaviors. Using available experimental data for a directionally solidified Ni-base superalloy, the improved formulation is found to accurately model intermediate oriented specimen.


Author(s):  
Dengji Zhou ◽  
Meishan Chen ◽  
Huisheng Zhang ◽  
Shilie Weng

Current maintenance, having a great impact on the safety, reliability and economics of gas turbine, becomes the major obstacle of the application of gas turbine in energy field. An effective solution is to process Condition based Maintenance (CBM) thoroughly for gas turbine. Maintenance of high temperature blade, accounting for most of the maintenance cost and time, is the crucial section of gas turbine maintenance. The suggested life of high temperature blade by Original Equipment Manufacturer (OEM) is based on several certain operating conditions, which is used for Time based Maintenance (TBM). Thus, for the requirement of gas turbine CBM, a damage evaluation model is demanded to estimate the life consumption in real time. A physics-based model is built, consisting of thermodynamic performance simulation model, mechanical stress estimation model, thermal estimation model, creep damage analysis model and fatigue damage analysis model. Unmeasured parameters are simulated by the thermodynamic performance simulation model, as the input of the mechanical stress estimation model and the thermal estimation model. Then the stress and temperature distribution of blades will be got as the input of the creep damage analysis model and the fatigue damage analysis model. The real-time damage of blades will be evaluated based on the creep and fatigue analysis results. To validate this physics-based model, it is used to calculate the lifes of high temperature blade under several certain operating conditions. And the results are compared to the suggestion value of OEM. An application case is designed to evaluate the application effect of this model. The result shows that the relative error of this model is less than 10.4% in selected cases. And it can cut overhaul costs and increase the availability of gas turbine significantly. Therefore, the physical-based damage evaluation model proposed in this paper, is found to be a useful tool to tracing the real-time life consumption of high temperature blade, to support the implementation of CBM for gas turbine, and to guarantee the reliability of gas turbine with lowest maintenance costs.


Author(s):  
Fangfei Sui ◽  
Rolf Sandström

Extensive creep tests have been performed on oxygen free copper with 50 ppm phosphorus at both low and high temperatures. It is the candidate material for storage of spent nuclear fuel in Sweden. Basic models without fitting parameters have been formulated to reproduce primary and secondary creep. For a long time, only empirical models existed for fitting of tertiary creep. To understand the role of creep damage, including recovery, cavitation and necking, basic models that do not involve adjustable parameters are in urgent demand. Only recently, basic models taking the relevant mechanisms into account have been developed. These models were used to predict the tertiary creep for copper at 75°C. The modelled results were compared with experimental creep curves and good agreement has been found. In the present paper, the models are applied to creep tests at higher temperatures (215 and 250°C). A similar representation with good accuracy is obtained. This demonstrates that the fundamental model for back stress is applicable for the higher temperature tests as well.


Author(s):  
Yue Liu ◽  
Weifeng Huang ◽  
Nima Rafibakhsh ◽  
Matthew I. Campbell ◽  
Christopher Hoyle

Assembly time estimation is a key factor in evaluating the performance of the assembly process. The overall goal of this study is to develop an efficient assembly time estimation method by generating the prediction model from an experimental design. This paper proposes a way to divide an assembly operation into four actions which consist of a) part movement, b) part installation, c) secure operations, and d) subassembly rotations. The focus of this paper is to design a time estimation model for the secure operation. To model secure times, a design of experiments is applied to collect experimental data based on the physical assembly experiments performed on products that are representative of common assembly processes. The Box-Behnken design (BBD) is an experiment design to support response surface methodology to interpret and estimate a prediction model for the securing operations. The goal is to use a quadratic model, which contains squared terms and variable interactions, to study the effects of different engineering parameters of securing time. The experiment is focused on individual-operator assembly operations. Various participants perform the experiment on representative product types, including a chainsaw, a lawn mower engine, and an airplane seat. In order to optimize the assembly time with different influence factors, mathematical models were estimated by applying the stepwise regression method in MATLAB. The second-order equations representing the securing time are expressed as functions with six input parameters. The models are trained by using all combinations of required data by the BBD method and predict the hold back data within a 95% confidence interval. Overall, the results indicate that the predicted value found was in good agreement with experimental data, with an Adjusted R-Squared value of 0.769 for estimated securing time. This study also shows that the BBD could be efficiently applied for the assembly time modeling, and provides an economical way to build an assembly time model with a minimum numbers of experiments.


2013 ◽  
Vol 577-578 ◽  
pp. 137-140
Author(s):  
Marie Kvapilová ◽  
Jiří Dvořák ◽  
Petr Král ◽  
Milan Svoboda ◽  
Vàclav Sklenička

The applicability of the Monkman-Grant relationship was analyzed and validated for ultrafine-grained metallic materials under investigation. A special attention has been given to the creep damage tolerance factor which is defined as the ratio of the strain to fracture to the Monkman-Grant ductility and which describes the coupling between creep deformation and damage based on continuum creep damage approach. It was found, that ultrafine-grained materials generally obey the Monkman-Grant relationship, however, the relationship is especially suitable for materials exhibiting short secondary creep and long tertiary creep stages when dislocation-controlled creep is dominant.


2018 ◽  
Vol 140 (5) ◽  
Author(s):  
J. Christopher ◽  
B. K. Choudhary

Additive creep rate model has been developed to predict creep strain-time behavior of materials important to engineering creep design of components for high temperature applications. The model has two additive formulations: the first one is related to sine hyperbolic rate equation describing primary and secondary creep deformation based on the evolution of internal stress with strain/time, and the second defines the tertiary creep rate as a function of tertiary creep strain. In order to describe creep data accurately, tertiary creep rate relation based on MPC-Omega methodology has been appropriately modified. The applicability of the model has been demonstrated for tempered martensitic plain 9Cr-1Mo steel for different applied stresses at 873 K. Based on the observations, a power law relationship between internal stress and applied stress has been established for the steel. Further, a higher creep damage accumulation with increasing life fraction has been observed at low stresses than those obtained at high stresses.


2013 ◽  
Vol 690-693 ◽  
pp. 157-163 ◽  
Author(s):  
Jun Yuan ◽  
Hong Xu ◽  
Yong Zhong Ni

In the traditional Norton-Bailey model, the stress exponent is a constant value when the temperature keeps constant, But for some materials, this situation can’t be suitable. Based on the analysis of the experimental data, a secondary creep constitutive model which can be used in the stress exponent changing situation has been proposed. By introducing Kachanov-Rabotnov damage equation, the modified creep model has been established for P92 steel at 610°C and 670°C, which can describe the second and tertiary stage. And the method to determine creep parameters of tertiary stage has been derived. The new model was embedded into ANSYS interface program, and used for calculating the creep life of P92 steel. The results show that the model is in agreement with the experimental data.


2009 ◽  
Vol 131 (6) ◽  
Author(s):  
Stefan Holmström ◽  
Juhani Rantala ◽  
Anssi Laukkanen ◽  
Kari Kolari ◽  
Heikki Keinänen ◽  
...  

Structures operating in the creep regime will consume their creep life at a greater rate in locations where the stress state is aggravated by triaxiality constraints. Many structures, such as the welded steam mixer studied here, also have multiple material zones differing in microstructure and material properties. The three-dimensional structure as such, in addition to interacting material zones, is a great challenge for finite element analysis (FEA), even to accurately pinpoint the critical locations where damage will be found. The studied steam mixer, made of 10CrMo 9-10 steel (P22), has after 100,000 h of service developed severe creep damage in several saddle point positions adjacent to nozzle welds. FE-simulation of long term behavior of this structure has been performed taking developing triaxiality constraints, material zones, and primary to tertiary creep regimes into account. The creep strain rate formulation is based on the logistic creep strain prediction model implemented to ABAQUS, including primary, secondary, and tertiary creep. The results are presented using a filtering technique utilizing the formulation of rigid plastic deformation for describing and quantifying the developing “creep exhaustion.”


Sign in / Sign up

Export Citation Format

Share Document