Plate Damage Detection Using Vibration-Based and Static Deformation-Based Approaches

Author(s):  
Jing Shi ◽  
X. W. Tangpong

Damage detection is important for sensing and analyzing the degradation of structures, and can effectively avoid potential catastrophic failures. Among the numerous studies in literature, most emphasis was given to the damage detection based on vibration response signals for simple beam structures. In this paper, the feasibility of roughness method for plates was investigated using both vibration-based data and static deformation data. Two detection methods, namely, roughness method and fractal dimension method, were used to analyze the data. Both types of data were obtained for aluminum plates using finite element simulation. It was found that both methods were able to detect the damage and locate its position precisely with the two types of signals. The effectiveness of damage detection using static deformation data was further demonstrated by experimenting with a cracked cantilever beam. A computer vision camera efficiently and automatically collected the static deformation data, and this approach showed great potential compared with the expensive and time-consuming collection process for vibration response data such as mode shapes.

2018 ◽  
Vol 931 ◽  
pp. 178-183 ◽  
Author(s):  
Yuriy Y. Shatilov ◽  
Alexander A. Lyapin

Conducting surveys of multi-storey buildings is a laborious task, because large volumes of visual and instrumental research should be carried out. Reduction of labor costs with an increase in the reliability of information about the state of damage and technical condition is an actual scientific and practical task. One of the ways to solve it is to use non-destructive vibration diagnostic methods. The purpose of carrying out diagnostics with the use of vibration based damage detection methods is to search for damages in structural elements that can cause the deviation of the dynamic parameters of a structure from calculated ones. Determination of the dynamic parameters of the structure, in particular natural frequencies and mode shapes of mechanical systems, is one of the most important tasks that allows obtaining integral information about the state of a structure. This article presents the results of calculations for the localization of slabs defects in a multi-storey building with a transverse crack, span L = 4.5 (m), height H = 0.2 (m), with prestressed reinforcement d = 0.05 (m). Vibration based Damage Index method was used to localize the defect. During the study, reliable localization values of the defect area of the slab were obtained, this indicates that the vibration method for determining the damage index with a sufficient degree of accuracy allowed predicting the site of damage to the structure.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Q. W. Yang ◽  
J. K. Liu ◽  
C.H. Li ◽  
C.F. Liang

Structural damage detection using measured response data has emerged as a new research area in civil, mechanical, and aerospace engineering communities in recent years. In this paper, a universal fast algorithm is presented for sensitivity-based structural damage detection, which can quickly improve the calculation accuracy of the existing sensitivity-based technique without any high-order sensitivity analysis or multi-iterations. The key formula of the universal fast algorithm is derived from the stiffness and flexibility matrix spectral decomposition theory. With the introduction of the key formula, the proposed method is able to quickly achieve more accurate results than that obtained by the original sensitivity-based methods, regardless of whether the damage is small or large. Three examples are used to demonstrate the feasibility and superiority of the proposed method. It has been shown that the universal fast algorithm is simple to implement and quickly gains higher accuracy over the existing sensitivity-based damage detection methods.


2006 ◽  
Vol 3-4 ◽  
pp. 309-314 ◽  
Author(s):  
Irina Trendafilova

This study investigates the possibilities for damage detection and location using the vibration response of an aircraft wing. A simplified finite element model of an aircraft wing is used to model its vibration response. The model is subjected to modal analysis- its natural frequencies are estimated and the mode shapes are determined. Two types of damage are considered - localised and distributed. The wing model is divided into a number of volumes. The goal of the study is to investigate the possibility to use the vibration response of an aircraft wing and especially its modal characteristics for the purposes of damage detection. So we’ll be trying to find suitable features, which can be used to detect damage and restrict it to one of the introduced volumes. The sensitivity of the modal frequencies of the model to damage in different locations is studied. Some general trends in the behaviour of these frequencies with change of the damage location are investigated. The utilization of the modal frequencies for detecting damage in a certain part of the wing is discussed


2018 ◽  
Vol 4 (2) ◽  
pp. 305 ◽  
Author(s):  
D. Hamidian ◽  
J. Salajegheh ◽  
E. Salajegheh

This paper presents a technique for irregular plate and regular dam damage detection based on combination of wavelet with adoptive neuro fuzzy inference system (ANFIS). Many damage detection methods need response of structures (such as the displacements, stresses or mode shapes) before and after damage, but this method only requires response of structures after damage, otherwise many damage detection methods study regular plate but this method also studies irregular plate. First, the structure (irregular plate or regular dam) is modelled by using ANSYS software, the model is analysed and structure’s responses with damage are obtained by finite element approach. Second, the responses at the finite element points with regular distances are obtained by using ANFIS. The damage zone is represented as the elements with reduced elasticity modules. Then these responses of structures are analysed with 2D wavelet transform. It is shown that matrix detail coefficients of 2D wavelet transform can specified the damage zone of plates and regular dams by perturbation in the damaged area.


2011 ◽  
Vol 05 (03) ◽  
pp. 259-270 ◽  
Author(s):  
TADANOBU SATO ◽  
YOUHEI TANAKA

In this paper, we propose a new attractor-based structural damage detection technique using chaotic excitation. Attractor is reconstructed using vibration response data and sensitive to the change of the system dynamics. By comparing the change of attractors from healthy and damaged structures, we detect and localize the damage. We use recurrence analysis to analyze the change of attractor. Numerical example demonstrates the robustness and sensitivity of the proposed method.


2021 ◽  
pp. 147592172110044
Author(s):  
Vamvoudakis-Stefanou Kyriakos ◽  
Fassois Spilios ◽  
Sakellariou John

A novel, unsupervised, hypersphere-based healthy subspace method for robust damage detection under non-quantifiable uncertainty via a limited number of random vibration response sensors is postulated. The method is based on the approximate construction, within a proper feature space, of a healthy subspace representing the healthy structural dynamics under uncertainty as the union of properly selected hyperspheres. This is achieved via a fully automated algorithm eliminating user intervention, and thus subjective selections, or complex optimization procedures. The main asset of the proposed method lies in combining simplicity and full automation with high performance. Its performance is systematically assessed via two experimental case studies featuring various uncertainty sources and distinct healthy subspace geometries, while interesting comparisons with three well-known robust damage detection methods are also performed. The results indicate excellent detection performance, which also compares favorably to that of alternative methods.


2009 ◽  
Vol 413-414 ◽  
pp. 699-706 ◽  
Author(s):  
Maciej Radzieński ◽  
Marek Krawczuk ◽  
Wiesław M. Ostachowicz

This paper presents experimental verification and comparison of damage detection methods based on changes in mode shapes such as: mode shape curvature (MSC), modal assurance criterion (MAC), strain energy (SE), modified Laplacian operator (MLO), generalized fractal dimension (GFD) and Wavelets Transform (WT). The object of the investigation is to determine benefits and drawbacks of the aforementioned methods and to develop data preprocessing algorithms for increasing damage assessment effectiveness by using signal processing techniques such as interpolation and extrapolation measured points. Noise reduction algorithms based on moving average, median filter and wavelet decomposition are also tested. The experiments were performed on a 1m long steal cantilever beam. Damage was introduced in form of 10% and 20% deep saw cut, placed in 10%, 30%, 50%, 70% and 90% beam length. Measurements were made using non-contact Scanning Laser Doppler Vibrometer at 125 points equally spaced along beam length.


Author(s):  
Sajad Shahverdi ◽  
Mohammad Ali Lotfollahi-Yaghin ◽  
Mohammad Hossein Aminfar ◽  
Ramin Valizadeh

During the service life, offshore structures continually accumulate damage as a result of applying the various environmental forces. Clearly the development of strong techniques for early damage detection is very important to avoid the possible occurrence of a disastrous structural failure. Most of vibration-based damage detection methods require the modal properties that are obtained from measured signals through the system identification techniques. However, the modal properties such as natural frequencies and mode shapes are not such a good sensitive indication of structural damage. The wavelet packet transform (WPT) is a mathematical tool that has a special advantage over the traditional Fourier transform in analyzing non-stationary signals. In this study, a damage detection index called wavelet packet energy rate index (WPERI), is used for the damage detection of offshore free span pipelines. The measured dynamic signals are decomposed into the wavelet packet components and the wavelet energy rate index is computed to indicate the structural damage. It is observed that this method can be used for damage detection of this kind of structures.


Author(s):  
L. Yu ◽  
T. Yin ◽  
H. P. Zhu

As the vibration-based structural damage detection methods are easily affected by the environmental noise, a novel noise analysis method is proposed based on the statistics in this paper together with the Monte Carlo technique for assessing the influence of experimental noise of modal data on sensitivity-based damage detection methods. Different from the commonly used random perturbation technique, the proposed technique is deduced directly by the Moore–Penrose generalized inverse of sensitivity matrix under the differential quotient rule of composite function. It can not only make the analysis process more effective but also analyze the noise influence on both frequencies and mode shapes in a similar way. Furthermore, an improved modal sensitivity based damage detection method is also proposed and compared with other two commonly used sensitivity-based methods in this paper. A one-story portal frame is adopted to evaluate the efficiency of both the proposed noise analysis technique and the improved modal sensitivity based method. The assessment results show that the proposed statistics-based noise analysis technique is effective and more suitable for the vibration-based damage identification. The improved modal sensitivity based method is more robust to noise than the other commonly used sensitivity-based methods.


2021 ◽  
pp. 147592172199847
Author(s):  
William Soo Lon Wah ◽  
Yining Xia

Damage detection methods developed in the literature are affected by the presence of outlier measurements. These measurements can prevent small levels of damage to be detected. Therefore, a method to eliminate the effects of outlier measurements is proposed in this article. The method uses the difference in fits to examine how deleting an observation affects the predicted value of a model. This allows the observations that have a large influence on the model created, to be identified. These observations are the outlier measurements and they are eliminated from the database before the application of damage detection methods. Eliminating the outliers before the application of damage detection methods allows the normal procedures to detect damage, to be implemented. A multiple-regression-based damage detection method, which uses the natural frequencies as both the independent and dependent variables, is also developed in this article. A beam structure model and an experimental wooden bridge structure are analysed using the multiple-regression-based damage detection method with and without the application of the method proposed to eliminate the effects of outliers. The results obtained demonstrate that smaller levels of damage can be detected when the effects of outlier measurements are eliminated using the method proposed in this article.


Sign in / Sign up

Export Citation Format

Share Document