Modelling of Misaligned Rotor Systems in Aero-Engines

Author(s):  
Jun Li ◽  
Jie Hong ◽  
Yanhong Ma ◽  
Dayi Zhang

Based on the analysis of structural and dynamic characteristics, a dynamic model of flexible rotor system under misalignment and unbalance excitation in aero-engine was developed through Lagrange equations. The model describes the mechanism and influencing factors of nonlinear properties of misaligned rotors. Then some numerical simulations were performed in order to get the vibration response in time and frequency domain. The results suggest that the rotor system and its coupling may behave in a complex and nonlinear way with the excitation of misalignment and unbalance. The response of the system contains 1× and 2× harmonics, and the spectrum signature closely relate to the misalignment magnitude and the distribution of unbalance mass. A series of experiments were also designed to verify the dynamic model. Their characteristics of response are in good agreement.

2014 ◽  
Vol 539 ◽  
pp. 3-8 ◽  
Author(s):  
De Xin Ren ◽  
Jie Hong ◽  
Cun Wang

Based on the structural and mechanics analysis of aero-engines rotor system, the dynamic model of the flexible rotor system with multi-supports are presented in order to solve the bearing misalignment problem of rotor system in aero-engines. The motion equations are derived through Lagrange method. The relationship between structural and mechanics characteristics parameters are built up. Finally, the dynamic influence of bearing misalignment on rotor system is divided into three kinds: additional rotor bending rigidity, additional bearing misalignment excitation force and additional imbalance. The equations suggest that additional imbalance excitation force activates the nonlinearity on rotor system and an additional 2× excitation force might appear.


Author(s):  
Shibing Liu ◽  
Bingen Yang

Flexible multistage rotor systems have a variety of engineering applications. Vibration optimization is important to the improvement of performance and reliability for this type of rotor systems. Filling a technical gap in the literature, this paper presents a virtual bearing method for optimal bearing placement that minimizes the vibration amplitude of a flexible rotor system with a minimum number of bearings. In the development, a distributed transfer function formulation is used to define the optimization problem. Solution of the optimization problem by a real-coded genetic algorithm yields the locations and dynamic coefficients of bearings, by which the prescribed operational requirements for the rotor system are satisfied. A numerical example shows that the proposed optimization method is efficient and accurate, and is useful in preliminary design of a new rotor system with the number of bearings unforeknown.


2011 ◽  
Vol 133 (3) ◽  
Author(s):  
Mansour Karkoub

The work presented here deals with the control of a flexible rotor system using the μ-synthesis control technique. This technique allows for the inclusion of modeling errors in the control design process in terms of uncertainty weights. The dynamic model of the rotor system, which includes discontinuous friction, is highly nonlinear and has to be linearized around an operating point in order to use μ-synthesis. The difference between the linear and nonlinear models is characterized in terms of uncertainty weights and included in the control design process. The designed controller is robust to uncertainty in the dynamic model, spillover, actuator uncertainty, and noise. The theoretical findings of the μ-synthesis control design are validated through simulations and the results are presented and discussed here.


2017 ◽  
Vol 140 (2) ◽  
Author(s):  
Shibing Liu ◽  
Bingen Yang

This paper presents a new approach to optimal bearing placement that minimizes the vibration amplitude of a flexible rotor system with a minimum number of bearings. The thrust of the effort is the introduction of a virtual bearing method (VBM), by which a minimum number of bearings can be automatically determined in a rotor design without trial and error. This unique method is useful in dealing with the issue of undetermined number of bearings. In the development, the VBM and a distributed transfer function method (DTFM) for closed-form analytical solutions are integrated to formulate an optimization problem of mixed continuous-and-integer type, in which bearing locations and bearing index numbers (BINs) (specially defined integer variables representing the sizes and properties of all available bearings) are selected as design variables. Solution of the optimization problem by a real-coded genetic algorithm yields an optimal design that satisfies all the rotor design requirements with a minimum number of bearings. Filling a technical gap in the literature, the proposed optimal bearing placement approach is applicable to either redesign of an existing rotor system for improvement of system performance or preliminary design of a new rotor system with the number of bearings to be installed being unforeknown.


1990 ◽  
Vol 112 (4) ◽  
pp. 440-443 ◽  
Author(s):  
J. L. Nikolajsen ◽  
M. S. Hoque

A new type of vibration damper for rotor systems has been developed and tested. The damper contains electroviscous fluid which solidifies and provides Coulomb-type friction damping when an electric voltage is imposed across the fluid. The damping capacity is controlled by the voltage. The damper has been incorporated in a flexible rotor system and found to be able to reduce high levels of unbalance excited vibrations. Other proven advantages include controllability, simplicity, and no requirement for oil supply. The anticipated capabilities to circumvent the critical speeds and to suppress rotor instabilities are still unconfirmed.


2020 ◽  
Vol 30 (05) ◽  
pp. 2050077 ◽  
Author(s):  
Yeyin Xu ◽  
Zhaobo Chen ◽  
Albert C. J. Luo

In this paper, a bifurcation tree of period-1 motion to chaos in a flexible nonlinear rotor system is presented through period-1 to period-8 motions. Stable and unstable periodic motions on the bifurcation tree in the flexible rotor system are achieved semi-analytically, and the corresponding stability and bifurcation of the periodic motions are analyzed by eigenvalue analysis. On the bifurcation tree, the appearance and vanishing of jumping phenomena of periodic motions are generated by saddle-node bifurcations, and quasi-periodic motions are induced by Neimark bifurcations. Period-doubling bifurcations of periodic motions are for developing cascaded bifurcation trees, however, the birth of new periodic motions are based on the saddle-node bifurcation. For a better understanding of periodic motions on the bifurcation tree, nonlinear harmonic amplitude characteristics of periodic motions are presented. Numerical simulations of periodic motions are performed for the verification of semi-analytical predictions. From such a study, nonlinear Jeffcott rotor possesses complex periodic motions. Such results can help one detect and control complex motions in rotor systems for industry.


2011 ◽  
Vol 138-139 ◽  
pp. 104-110 ◽  
Author(s):  
Zi Gang Li ◽  
Ming Li

The dynamic behaviors of a flexible multi-rotor system with a fault of parallel misalignment are investigated on the basis of assumptions, such as the long journal bearings, small rotor misalignment and mass disk unbalance. Firstly, based on the Lagrange equations with undetermined multiplier, the dynamic model of a rotor system under the action of the nonlinear oil film forces is developed after taking into account the holonomic constraint, which describes the misalignment relation between two rotors, and the theoretical analysis reveals that the system with eleven DOF is of strong nonlinear properties. Then the nonlinear dynamic characteristics on numerical technique, such as steady state response, rotor orbit, Poincaré section and the largest Lyapunov exponent, are paid more attention in this study. The results show that at low speed the components of the steady-state responses in lateral direction is of the synchronous frequency with rotating speed as well as its integer multiples frequencies. As the speed increases the dynamic characteristics become complicated, and the nT-period, quasi-period and chaotic oscillations occur.


Author(s):  
Wenzhen Xie ◽  
Chao Liu ◽  
Nanfei Wang ◽  
Dongxiang Jiang

Dual-rotor systems are widely used in aero-engines, in which rubbing–misalignment mixed faults are essential, as both are frequently observed and can occur simultaneously due to the harsh working conditions of high temperature, high pressure, and high speed. To analyze the vibration characteristics of such faults, a dual-rotor system model is established and dynamic responses under varying parameters of the dual-rotor system with rubbing–misalignment mixed fault are investigated. Through numerical simulation, the effects of speed ratio, rubbing clearance, and rubbing stiffness on the dual-rotor system with rubbing–misalignment fault are revealed. Meanwhile, experimental tests are conducted for validation, the main findings of which are that the characteristic frequency components could benefit the diagnosis of mixed faults in dual-rotor systems.


Author(s):  
Meiling Wang ◽  
Qingkai Han ◽  
Baogang Wen ◽  
Hao Zhang ◽  
Tianmin Guan

This paper investigates the vibration patterns, i.e. rigid motions of shaft and elastic deformation of support structures, of fan rotor system in aero-engine, which differs from traditional flexible rotor systems, and together with its shaft transverse motions due to unbalanced mass. The fan rotor system commonly is composed of one rigid shaft and two flexible support structures (such as squirrel cages), which is effective to decrease the critical speeds avoiding serious shaft vibration due to unbalance. Scaled test rig for realistic fan rotor system is set up according to similarity principles, governing differential equations of which are deduced by means of Lagrangian approach with four degrees of freedom. In contrast to modeling a traditional flexible rotor system, the system stiffness is not determined by the shaft but the two flexible support structures. The rigid shaft only contributes to the inertial items of the governing equations. Parameter values of dynamic model are identified from measurements on the scaled test rig, the modal shapes and the modal energy distributions are calculated. These modal characteristics of the fan rotor system are quite different from those of a traditional flexible rotor system whose stiffness mainly contributed by its elastic shaft even the system values are consistent. The obtained modal characteristics are compared and confirmed by using the simulation results of a corresponding finite element model, in which shaft is built by rotating beam elements and its flexible structures are built by equivalent spring elements. Campbell diagrams of the fan rotor system are used to illustrate the gyroscopic effect with the increasing speeds. And then the unbalance responses are calculated through the deduced analytical formula rapidly and comparisons, including the response spectrum and orbits, the amplitude and phase frequency response curves, and operating deflection shapes, are carried out in the sub- and super-critical range.


Sign in / Sign up

Export Citation Format

Share Document