Modal characteristics and unbalance responses of fan rotor system with flexible support structures in aero-engine

Author(s):  
Meiling Wang ◽  
Qingkai Han ◽  
Baogang Wen ◽  
Hao Zhang ◽  
Tianmin Guan

This paper investigates the vibration patterns, i.e. rigid motions of shaft and elastic deformation of support structures, of fan rotor system in aero-engine, which differs from traditional flexible rotor systems, and together with its shaft transverse motions due to unbalanced mass. The fan rotor system commonly is composed of one rigid shaft and two flexible support structures (such as squirrel cages), which is effective to decrease the critical speeds avoiding serious shaft vibration due to unbalance. Scaled test rig for realistic fan rotor system is set up according to similarity principles, governing differential equations of which are deduced by means of Lagrangian approach with four degrees of freedom. In contrast to modeling a traditional flexible rotor system, the system stiffness is not determined by the shaft but the two flexible support structures. The rigid shaft only contributes to the inertial items of the governing equations. Parameter values of dynamic model are identified from measurements on the scaled test rig, the modal shapes and the modal energy distributions are calculated. These modal characteristics of the fan rotor system are quite different from those of a traditional flexible rotor system whose stiffness mainly contributed by its elastic shaft even the system values are consistent. The obtained modal characteristics are compared and confirmed by using the simulation results of a corresponding finite element model, in which shaft is built by rotating beam elements and its flexible structures are built by equivalent spring elements. Campbell diagrams of the fan rotor system are used to illustrate the gyroscopic effect with the increasing speeds. And then the unbalance responses are calculated through the deduced analytical formula rapidly and comparisons, including the response spectrum and orbits, the amplitude and phase frequency response curves, and operating deflection shapes, are carried out in the sub- and super-critical range.

2013 ◽  
Vol 136 (2) ◽  
Author(s):  
Y. A. Khulief ◽  
Wasiu Oke ◽  
M. A. Mohiuddin

The need to devise a low-speed balancing method for balancing high-speed rotors was recognized and addressed. In this paper, a scheme that combines both the influence coefficients and modal balancing techniques is presented. The scheme is developed for low-speed balancing of high-speed rotors, and relies on knowledge of the modal characteristics of the rotor. The conditions for applicability of the method were stated in the light of the experientially estimated rotor deflection mode shapes. An experimental test rig of a flexible rotor was constructed to verify the applicability and reliability of the low-speed balancing scheme.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Wei Yan ◽  
Lidong He ◽  
Zhe Deng ◽  
Xingyun Jia

Abstract As a novel structural damper, the unique structural characteristics of the integral squeeze film damper (ISFD) solve the nonlinear problem of the traditional squeeze film damper (SFD), and it has good linear damping characteristics. In this research, the experimental studies of ISFD vibration reduction performance are carried out for various working conditions of unbalanced rotors. Two ball bearing-rotor system test rigs are built based on ISFD: a rigid rotor test rig and a flexible rotor test rig. When the rotational speed of rigid rotor is 1500 rpm, ISFD can reduce the amplitude of the rotor by 41.79%. Under different unbalance conditions, ISFD can effectively improve the different degrees of unbalanced faults in the rotor system, reduce the amplitude by 43.21%, and reduce the sensitivity of the rotor to unbalance. Under different rotational speed conditions, ISFD can effectively suppress the unbalanced vibration of rigid rotor, and the amplitude can be reduced by 53.51%. In the experiment of the unbalanced response of the flexible rotor, it is found that ISFD can improve the damping of the rotor system, effectively suppress the resonance of the rotor at the critical speed, and the amplitude at the first-order critical speed can be reduced by 31.72%.


Author(s):  
Long Hao ◽  
Dongjiang Han ◽  
Wei Zhao ◽  
Qingjun Zhao ◽  
Jinfu Yang

Gas bearings are widely used in micro- and small turbomachinery. Because of the pursuit of high efficiency, turbomachinery adopts small clearance of rotor and stator. The gas bearing rotor system easily suffers from rub impact due to the inherently low damping and load capacity of gas film. Axial rub impact may lead to catastrophic failure of gas bearing rotor system. Previous work put emphasis on radial rub, and only a few papers researched on the axial rub impact by simulation method. In this paper, dynamic responses of full annular axial rub are investigated numerically and experimentally. A single span flexible rotor test rig is established to support this research. Dynamic characteristics of full annular axial rub of this gas bearing rotor system are obtained with finite element language-APDL. Dynamic characteristics within full speed range are experimentally researched based on the test rig. The dynamic behaviors are analyzed by means of waterfall diagrams, frequency spectrums, orbit trails, and vibration amplitude waveforms. During speed up, half speed whirl and gas film oscillation occur in radial direction. During speed down, the full annular axial rub between rotor thrust disk and gas bearing occurs. When lightly axial rub impact happens, the vibration patterns in the radial direction change barely, and 0 Hz component appears in the axial direction. When serious full annular axial rub impact happens, 0 Hz component occurs in both radial and axial directions and rotor orbit shows transverse motion in radial direction. These forms of dynamic characteristics can be effectively used to diagnose the full annular axial rub impact.


2006 ◽  
Vol 505-507 ◽  
pp. 589-594 ◽  
Author(s):  
Huai Ku Sun ◽  
Cun Gin Chen ◽  
Yu Chen Shen

Computer-aided analysis of rigid-body mechanisms is combined with the finite element analysis of flexible structures to develop a computer model and derive the equation of motion, incorporating the Lagrange multiplier, to be used in the dynamic analysis of multi-rigid-body mechanisms mounted on flexible support structures. The resulting equations are solved by numerical integration. Predicting and analyzing the performance of the full system, including the motion of the system components and the forcing condition, during the engineering design process will promote the success of the entire system. Finally, a machine gun system with a flexible mount is given as a numerical example. The results reveal that the interaction between the rigid-body mechanisms and its flexible support structures importantly determines the performance of whole system. This study considers only the planar case. Our future work will propose a more complicated fully three-dimensional model.


2014 ◽  
Vol 705 ◽  
pp. 79-82
Author(s):  
Jing Jing Huang ◽  
Long Xi Zheng ◽  
Mei Qing

A two-disk rotor system under the aero-engine support structure of typical 1-0-1 was established and the dynamical characteristics were analyzed. The two-disk rotor model was integrated to the Isight. The multi-objective design optimization of the transient process was then carried out with Evolutionary Optimization Algorithm. The optimum positions of the two-disk rotor system were obtained at the specified constraints. In order to verify the validity of the design optimization, the transient test was carried out on a high-speed flexible rotor mockup. The maximum amplitude of disk 1 cross the first critical rotation speed fell 50% and the maximum amplitude of disk 2 decreased by 20%. Experimental results indicated that the optimization method could obtain the position of the flexible rotor with the minimum amplitude and improve the design efficiency and quality, which had practical significance in the design of aero-engine rotor system.


Author(s):  
Y. A. Khulief ◽  
M. A. Mohiuddin

The need to devise a low-speed balancing method for balancing high-speed rotors was recognized and addressed. In this paper, a scheme that combines both the influence coefficients and modal balancing techniques is presented. The scheme is developed for low-speed balancing of high-speed rotors, and relies on knowledge of modal characteristics of the rotor. The conditions for applicability of the method were stated in the light of the experientially estimated rotor deflection mode shapes. An experimental test rig of a flexible rotor was constructed to verify the applicability and reliability of the low-speed balancing scheme.


Author(s):  
Jun Li ◽  
Jie Hong ◽  
Yanhong Ma ◽  
Dayi Zhang

Based on the analysis of structural and dynamic characteristics, a dynamic model of flexible rotor system under misalignment and unbalance excitation in aero-engine was developed through Lagrange equations. The model describes the mechanism and influencing factors of nonlinear properties of misaligned rotors. Then some numerical simulations were performed in order to get the vibration response in time and frequency domain. The results suggest that the rotor system and its coupling may behave in a complex and nonlinear way with the excitation of misalignment and unbalance. The response of the system contains 1× and 2× harmonics, and the spectrum signature closely relate to the misalignment magnitude and the distribution of unbalance mass. A series of experiments were also designed to verify the dynamic model. Their characteristics of response are in good agreement.


2021 ◽  
Author(s):  
Jie Hong ◽  
Qiyao Dai ◽  
Fayong Wu ◽  
Yanhong Ma

Abstract Due to the limitation of assembly conditions and working load environment, the design of pedestal looseness is often used in the structural design of aeroengine multi support flexible rotor, which affects the vibration response and stability of the rotor system. In this paper, a dynamic model of a flexible rotor system with pedestal looseness is established for a practical aeroengine flexible rotor system. Next, a nonlinear modal analysis process for the multi degree of freedom nonlinear rotor system is proposed. Based on this, the nonlinear modal characteristics of the flexible rotor system with pedestal looseness are analyzed. An interval prediction method of modal damping interval for stability analysis of rotor system is presented, and the influence of key characteristic parameters on modal damping and vibration stability of rotor system is explored. Finally, the vibration characteristics of the rotor system are obtained by numerical integration method. The results show that the modal characteristics of the rotor vary with the amplitude of the rotor, and have the feature of interval distribution; vibration stability mainly depends on tangential friction and additional lateral constraint; when the amplitude of the rotor is large, the backward whirling motion may occur and the vibration may be unstable. This paper will provide a theoretical method for dynamic optimization of multi support flexible rotor system, which is helpful to ensure the reliability and safety design of aeroengine.


Sign in / Sign up

Export Citation Format

Share Document