Influence of Nonlinear Effects on a Piezoelectric Energy Harvesting Device

Author(s):  
Andreza T. Mineto ◽  
Paulo S. Varoto

In this paper we present an analytical investigation of a nonlinear energy harvester device. The device is composed of a cantilever beam partially covered by piezoelectric ceramics in a bimorph configuration with a magnetic lumped mass attached to the beam’s free end. The model accounts for the nonlinearity coming from the piezoelectric constitutive equations in addition to the nonlinear effect arising from the magnetic field generated by the magnetic properties of the tip mass and additional magnetic sources in the vicinity of the beam. The electromechanical coupled equations are solved numerically through the initial value problems for ordinary differential equations. The electrical power output is calculated by varying the amplitude of the base acceleration, the distance between the magnets and the load resistor. The stability of the system is also investigated. From the numerical results it is found that the influence of the parameters investigated in the frequency range of operation of the device and the nonlinear effects present on the device energy harvester extend the useful frequency range of these.

Author(s):  
Paulo S. Varoto ◽  
Andreza T. Mineto

It is known that the best performance of a given piezoelectric energy harvester is usually limited to excitation at its fundamental resonance frequency. If the ambient vibration frequency deviates slightly from this resonance condition then the electrical power delivered is drastically reduced. One possible way to increase the frequency range of operation of the harvester is to design vibration harvesters that operate in the nonlinear regime. The main goal of this article is to discuss the potential advantages of introducing nonlinearities in the dynamics of a beam type piezoelectric vibration energy harvester. The device is a cantilever beam partially covered by piezoelectric material with a magnet tip mass at the beam’s free end. Governing equations of motion are derived for the harvester considering the excitation applied at its fixed boundary. Also, we consider the nonlinear constitutive piezoelectric equations in the formulation of the harvester’s electromechanical model. This model is then used in numerical simulations and the results are compared to experimental data from tests on a prototype. Numerical as well as experimental results obtained support the general trend that structural nonlinearities can improve the harvester’s performance.


2015 ◽  
Vol 2015 ◽  
pp. 1-13 ◽  
Author(s):  
H. Salmani ◽  
G. H. Rahimi ◽  
S. A. Hosseini Kordkheili

It has been proven that tapering the piezoelectric beam through its length optimizes the power extracted from vibration based energy harvesting. This phenomenon has been investigated by some researchers using semianalytical, finite element and experimental methods. In this paper, an exact analytical solution is presented to calculate the power generated from vibration of exponentially tapered unimorph and bimorph with series and parallel connections. The mass normalized mode shapes of the exponentially tapered piezoelectric beam with tip mass are implemented to transfer the proposed electromechanical coupled equations into modal coordinates. The steady states harmonic solution results are verified both numerically and experimentally. Results show that there exist values for tapering parameter and electric resistance in a way that the output power per mass of the energy harvester will be maximized. Moreover it is concluded that the electric resistance must be higher than a specified value for gaining more power by tapering the beam.


Micromachines ◽  
2018 ◽  
Vol 9 (12) ◽  
pp. 667 ◽  
Author(s):  
Jinda Jia ◽  
Xiaobiao Shan ◽  
Deepesh Upadrashta ◽  
Tao Xie ◽  
Yaowen Yang ◽  
...  

This paper presents an upright piezoelectric energy harvester (UPEH) with cylinder extension along its longitudinal direction. The UPEH can generate energy from low-speed wind by bending deformation produced by vortex-induced vibrations (VIVs). The UPEH has the advantages of less working space and ease of setting up an array over conventional vortex-induced vibration harvesters. The nonlinear distributed modeling method is established based on Euler–Bernoulli beam theory and aerodynamic vortex-induced force of the cylinder is obtained by the van der Pol wake oscillator theory. The fluid–solid–electricity governing coupled equations are derived using Lagrange’s equation and solved through Galerkin discretization. The effect of cylinder gravity on the dynamic characteristics of the UPEH is also considered using the energy method. The influences of substrate dimension, piezoelectric dimension, the mass of cylinder extension, and electrical load resistance on the output performance of harvester are studied using the theoretical model. Experiments were carried out and the results were in good agreement with the numerical results. The results showed that a UPEH configuration achieves the maximum power of 635.04 μW at optimum resistance of 250 kΩ when tested at a wind speed of 4.20 m/s. The theoretical results show that the UPEH can get better energy harvesting output performance with a lighter tip mass of cylinder, and thicker and shorter substrate in its synchronization working region. This work will provide the theoretical guidance for studying the array of multiple upright energy harvesters.


Sensors ◽  
2021 ◽  
Vol 21 (20) ◽  
pp. 6759
Author(s):  
Zdenek Machu ◽  
Ondrej Rubes ◽  
Oldrich Sevecek ◽  
Zdenek Hadas

This paper deals with analytical modelling of piezoelectric energy harvesting systems for generating useful electricity from ambient vibrations and comparing the usefulness of materials commonly used in designing such harvesters for energy harvesting applications. The kinetic energy harvesters have the potential to be used as an autonomous source of energy for wireless applications. Here in this paper, the considered energy harvesting device is designed as a piezoelectric cantilever beam with different piezoelectric materials in both bimorph and unimorph configurations. For both these configurations a single degree-of-freedom model of a kinematically excited cantilever with a full and partial electrode length respecting the dimensions of added tip mass is derived. The analytical model is based on Euler-Bernoulli beam theory and its output is successfully verified with available experimental results of piezoelectric energy harvesters in three different configurations. The electrical output of the derived model for the three different materials (PZT-5A, PZZN-PLZT and PVDF) and design configurations is in accordance with lab measurements which are presented in the paper. Therefore, this model can be used for predicting the amount of harvested power in a particular vibratory environment. Finally, the derived analytical model was used to compare the energy harvesting effectiveness of the three considered materials for both simple harmonic excitation and random vibrations of the corresponding harvesters. The comparison revealed that both PZT-5A and PZZN-PLZT are an excellent choice for energy harvesting purposes thanks to high electrical power output, whereas PVDF should be used only for sensing applications due to low harvested electrical power output.


Sensors ◽  
2020 ◽  
Vol 20 (4) ◽  
pp. 1206 ◽  
Author(s):  
Wei-Jiun Su ◽  
Jia-Han Lin ◽  
Wei-Chang Li

This paper investigates a piezoelectric energy harvester that consists of a piezoelectric cantilever and a tip mass for horizontal rotational motion. Rotational motion results in centrifugal force, which causes the axial load on the beam and alters the resonant frequency of the system. The piezoelectric energy harvester is installed on a rotational hub in three orientations—inward, outward, and tilted configurations—to examine their influence on the performance of the harvester. The theoretical model of the piezoelectric energy harvester is developed to explain the dynamics of the system and experiments are conducted to validate the model. Theoretical and experimental studies are presented with various tilt angles and distances between the harvester and the rotating center. The results show that the installation distance and the tilt angle can be used to adjust the resonant frequency of the system to match the excitation frequency.


2016 ◽  
Vol 09 (05) ◽  
pp. 1650069 ◽  
Author(s):  
Yaoze Liu ◽  
Tongqing Yang ◽  
Fangming Shu

Since the piezoelectric properties were used for energy harvesting, almost all forms of energy harvester needs to be bonded with a mass block to achieve pre-stress. In this article, disc type piezoelectric energy harvester is chosen as the research object and the relationship between mass bonding area and power output is studied. It is found that if the bonding area is changed as curved, which is usually complanate in previous studies, the deformation of the circular piezoelectric ceramic is more uniform and the power output is enhanced. In order to test the change of the deformation, we spray several homocentric annular electrodes on the surface of a piece of bare piezoelectric ceramic and the output of each electrode is tested. Through this optimization method, the power output is enhanced to more than 11[Formula: see text]mW for a matching load about 24[Formula: see text]k[Formula: see text] and a tip mass of 30[Formula: see text]g at its resonant frequency of 139[Formula: see text]Hz.


Materials ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 1895
Author(s):  
Mohammad Uddin ◽  
Shane Alford ◽  
Syed Mahfuzul Aziz

This paper focuses on the energy generating capacity of polyvinylidene difluoride (PVDF) piezoelectric material through a number of prototype sensors with different geometric and loading characteristics. The effect of sensor configuration, surface area, dielectric thickness, aspect ratio, loading frequency and strain on electrical power output was investigated systematically. Results showed that parallel bimorph sensor was found to be the best energy harvester, with measured capacitance being reasonably acceptable. Power output increased with the increase of sensor’s surface area, loading frequency, and mechanical strain, but decreased with the increase of the sensor thickness. For all scenarios, sensors under flicking loading exhibited higher power output than that under bending. A widely used energy harvesting circuit had been utilized successfully to convert the AC signal to DC, but at the sacrifice of some losses in power output. This study provided a useful insight and experimental validation into the optimization process for an energy harvester based on human movement for future development.


Author(s):  
Carlos De Marqui ◽  
Alper Erturk ◽  
Daniel J. Inman

In this paper, the use of segmented electrodes is investigated to avoid cancellation of the electrical outputs of the torsional modes in energy harvesting from piezo-elastic and piezo-aero-elastic systems. The piezo-elastic behavior of a cantilevered plate with an asymmetric tip mass under base excitation is investigated using an electromechanically coupled finite element (FE) model. Electromechanical frequency response functions (FRFs) are obtained using the coupled FE model both for the continuous and segmented electrodes configurations. When segmented electrodes are considered torsional modes also become significant in the resulting electrical FRFs, improving broadband (or varying-frequency excitation) performance of the generator plate. The FE model is also combined with an unsteady aerodynamic model to obtain the piezo-aero-elastic model. The use of segmented electrodes to improve the electrical power generation from aeroelastic vibrations of plate-like wings is investigated. Although the main goal here is to obtain the maximum electrical power output for each airflow speed (both for the continuous and segmented electrode cases), piezoelectric shunt damping effect on the aeroelastic response of the generator wing is also investigated.


Author(s):  
Saman Nezami ◽  
HyunJun Jung ◽  
Myung Kyun Sung ◽  
Soobum Lee

This paper presents mathematical modeling of an energy harvester (EH) for a wireless structure health monitoring (SHM) system in wind turbine blades. The harvester consists of a piezoelectric energy harvester (PEH) beam, a gravity-induced disk, and magnets attached to both the beam and the disk. An electromechanical model of the proposed EH is developed using the energy method with repelling magnetic force considered. The three coupled equations — the motion of the disk, the vibration of the beam, and the voltage output — are derived and solved using ODE45 in MATLAB software. The result showed the blade rotation speed affects the output angular velocity of disk and the output PEH voltage. That is, as the blade speed increases, the disk angular velocity becomes nonlinear and chaotic which is more beneficial to generate larger power.


2018 ◽  
Vol 277 ◽  
pp. 124-133 ◽  
Author(s):  
Jung Hwan Ahn ◽  
Won Seop Hwang ◽  
Sinwoo Jeong ◽  
Jae Yong Cho ◽  
Seong Do Hong ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document