Comparison Orthogonal Tube Turning Data Versus Finite Element Simulation Using LS Dyna

Author(s):  
Vishnu Vardhan Chandrasekaran ◽  
Lewis N. Payton

The current study focuses on building a 2-Dimensional finite element model to simulate the orthogonal machining process under a dry machining environment in a commercially available FEA solver LS DYNA. One of the key objectives of this thesis is to carefully document the use of LS Dyna to model metal cutting, allowing other researchers to more quickly build on this work. Actual force data is obtained using an Orthogonal Tube Turning apparatus that has been statistically validated to an accuracy of 99+%. The work material used in this study is Aluminum 6061-T6 alloy. The tool material is tool steel, which is modeled as a rigid body. A Plastic Kinematic Material Hardening model is used to define the work material. Chip formation is based on the effective failure plastic strain. A constant coefficient of friction between the tool and work piece is used, obtained from the actual experimental results. The simulation is carried out with the same constant velocity, different rake angles and depth cuts as in the real world experiment. The cutting force and thrust force values obtained for each combination of rake angle and cut depth are validated against the experimental data obtained at Auburn University. The resulting model is considered valid enough to use for sensitivity analysis of the metal cutting process in aluminum alloy 6061-T6 in the university environment. The model is available publicly to any university from a website provided.

2008 ◽  
Vol 392-394 ◽  
pp. 88-92
Author(s):  
Xiao Wang ◽  
H. Yan ◽  
C. Liang ◽  
B. Wu ◽  
Hui Xia Liu ◽  
...  

To prevent or reduce the formation of burr efficiently in metal cutting, it is necessary to reveal the burr formation mechanism. A finite element model of cutting-direction burr formation in orthogonal machining was presented in this paper. The simulation of the burr formation process was conducted. Undeformed chip thickness, rake angle, rounded cutting edge radius and workpiece material were included in cutting conditions, whose influences on burr formation were investigated, according to the simulation results. By comparing the results of the simulation and the experiment, good consistency is achieved which proves that the finite element model of burr formation in this paper is significant and effective to predict burr formation.


2014 ◽  
Vol 621 ◽  
pp. 611-616 ◽  
Author(s):  
Yan Juan Hu ◽  
Yao Wang ◽  
Zhan Li Wang

In order to study the temperature field distribution in the process of machining, the finite element theory was used to establish the orthogonal cutting finite element model, and the key technologies were discussed simultaneously. By using ABAQUS software for cutting AISI1045 steel temperature field of numerical simulation, the conclusion about changing rule of cutting temperature field can be gotten. The results show that this method can efficiently simulate the distribution of temperature field of the workpiece, cutter and scraps, which is effected by thermo-mechanical coupling in metal work process. It provides the theory evidence for the intensive study of metal-cutting principle, optimizing cutting parameters and improving processing technic and so on.


Manufacturing ◽  
2003 ◽  
Author(s):  
T. D. Marusich ◽  
R. J. McDaniel ◽  
S. Usui ◽  
J. A. Fleischmann ◽  
T. R. Kurfess ◽  
...  

Hard turning processes promise affordable fabrication of machined components with high dimensional accuracy requirements. In an effort to achieve the desired economics a vast array of process variables must be considered including tool material, geometry, edge preparation, wear, speed and feed selection, while maintaining part quality. One method to reduce the number of necessary experiments is through accurate and reliable modeling. A three-dimensional finite element model is presented which includes fully adaptive unstructured mesh generation, tight thermo-mechanically coupling, deformable tool-chip-workpiece contact, interfacial heat transfer across the tool-chip boundary, momentum effects at high speeds and constitutive models appropriate for high strain rate, finite deformation analyses. The model is applied to nose turning of hardened steel workpieces, HRc 60. Metal cutting tests are performed, cutting forces collected, and validation comparison is made.


2013 ◽  
Vol 641-642 ◽  
pp. 277-280
Author(s):  
Cheng Lei ◽  
Shou Ne Xiao ◽  
Shi Hui Luo

The three-dimensional explicit dynamic analysis of metal cutting process is done using the non- linear finite element software LS-DYNA. In the finite element model, 8- node 3D solid element based on one- point integration Lagrangian formulation is adopted, metal material is modeled with Johnson-Cook constitutive model, chip separation is simulated using the material failure criterion of Johnson and Cook proposed and combing the failure element deletion method, friction model of chip-tool contact interface is developed to simultaneously account for sticking and sliding situation. Through explicit analysis, rake angle, cutting depth, and cutting width on the shape of the chip influence are obtained.


2020 ◽  
Vol 15 (4) ◽  
Author(s):  
Krishna Kumar M ◽  
Sangaravadivel P

The measurement of cutting forces in metal cutting is essential to estimate the power requirements, to design the cutting tool and to analyze machining process for different work and tool material combination. Although cutting forces can be measured by different methods, the measurement of cutting forces by a suitable dynamometer is widely used in industrial practice. Mechanical and strain gauge dynamometer are most widely used for measuring forces in metal cutting. The principle of all dynamometers is based on the measurement of deflections or strain produced from the dynamometer structure from the action of cutting force. In this project, a dynamometer is used to measure cutting force, feed force and radial force by using strain gauge accelerometer while turning different material in lathe. The dynamometer is a 500kg force 3- component system. As the tool comes in contact with the work piece the various forces developed are captured and transformed into numerical form system. In this project three forces of different materials such as aluminum, mild steel, brass, copper have been noted down. The forces on these materials with variation in speed and depth of cut are studied. Graphs are drawn on how these forces vary due to variation in speed.


Author(s):  
Pradeep L. Menezes ◽  
Michael R. Lovell ◽  
Jeen-Shang Lin ◽  
C. Fred Higgs

Understanding the tribological aspects of machining processes are essential for increasing the dimensional accuracy and surface integrity of products, as well as gaining a better control of tool wear, chip handling and power consumption. The objective of this investigation is to develop numerical models that accurately predict the chip formation and stress profiles in the work-piece during orthogonal metal cutting using the explicit finite-element method (FEM). In our simulations, a damage material model was utilized to capture the work-piece chip separation behavior and the simultaneous breakage of the chip into multiple fragments. In the simulation, the rigid steel cutter of different rake angles was moved at different velocities against a stationary aluminum work-piece at constant friction for a cutting depth of 1 mm. Overall, the results indicate that the explicit FEM is a powerful tool for simulating metal cutting and discontinuous chip formation. The rake angle had a significant effect on the formation of chip during metal cutting. The formation of discontinuous chip along the contact interface was hypothesized to be due to the internal crack initiation and propagation in front of the tool and above the cutting edge, rather than from the free surface.


Author(s):  
N. Balihodzic ◽  
H. A. Kishawy ◽  
R. J. Rogers

A plane-strain thermo-elasto-viscoplastic finite element model has been developed and used to simulate orthogonal machining. Simulations of cutting 304L stainless steel have been carried out using sharp, chamfered, and honed ceramic tools. Employing a combined thermal and mechanical stress analysis with temperature-dependent physical properties, the finite element model is used to investigate the effect of process parameters, tool geometry and edge preparation on the machining process. Stress and strain distributions within the chip and the elastic tool are presented. In addition, trends in the cutting and thrust forces, contact stress distributions and the plastic deformation beneath the machined surface are studied.


1985 ◽  
Vol 107 (4) ◽  
pp. 349-354 ◽  
Author(s):  
J. S. Strenkowski ◽  
J. T. Carroll

A finite element model of orthogonal metal cutting is described. The paper introduces a new chip separation criterion based on the effective plastic strain in the workpiece. Several cutting parameters that are often neglected in simplified metal-cutting models are included, such as elastic-plastic material properties of both the workpiece and tool, friction along the tool rake face, and geometry of the cutting edge and workpiece. The model predicts chip geometry, residual stresses in the workpiece, and tool stresses and forces, without any reliance on empirical metal cutting data. The paper demonstrates that use of a chip separation criterion based on effective plastic strain is essential in predicting chip geometry and residual stresses with the finite element method.


2011 ◽  
Vol 70 ◽  
pp. 315-320 ◽  
Author(s):  
Riaz Muhammad ◽  
Agostino Maurotto ◽  
Anish Roy ◽  
Vadim V. Silberschmidt

Analysis of the cutting process in machining of advanced alloys, which are typically difficult-to-machine materials, is a challenge that needs to be addressed. In a machining operation, cutting forces causes severe deformations in the proximity of the cutting edge, producing high stresses, strain, strain-rates and temperatures in the workpiece that ultimately affect the quality of the machined surface. In the present work, cutting forces generated in a vibro-impact and hot vibro-impact machining process of Ti-based alloy, using an in-house Ultrasonically Assisted Turning (UAT) setup, are studied. A three-dimensional, thermo-mechanically coupled, finite element model was developed to study the thermal and mechanical processes in the cutting zone for the various machining processes. Several advantages of ultrasonically assisted turning and hot ultrasonically assisted turning are demonstrated when compared to conventional turning.


Sign in / Sign up

Export Citation Format

Share Document