Heat Recovery With Oscillating Heat Pipes

Author(s):  
Charles R. McCullough ◽  
Scott M. Thompson ◽  
Heejin Cho

Waste-heat recovery applied in HVAC air systems is of interest to increase the energy efficiency of residential, commercial and industrial buildings. In this study, the feasibility of using tubular-shaped oscillating heat pipes (OHPs), which are two-phase heat transfer devices with ultra-high thermal conductivity, for heat exchange between counter-flowing air streams (i.e., outdoor and exhaust air flows) was investigated. For a prescribed volumetric flow rate of air and duct geometry, four different OHP Heat Exchangers (OHP-HEs) were sized via the ε-NTU method for the task of sub-cooling intake air 5.5 °C (10 °F). The OHP-HE tubes were assumed to have a static thermal conductivity of 50,000 W/m·K and only operate upon a minimum temperature difference in order to simulate their inherent heat transport capability and start-up behavior. Using acetone as the working fluid, it was found that for a maximum temperature difference of 7°C or more, the OHP-HE can operate and provide for an effectiveness of 0.36. Pressure drop analysis indicates the presented OHP-HE design configurations provide for a minimum of 5 kPa. The current work provides a necessary step for quantifying and designing the OHP for waste heat recovery in AC systems.

Author(s):  
Govinda Mahajan ◽  
Heejin Cho ◽  
Scott M. Thompson ◽  
Harrison Rupp ◽  
Kevin Muse

Oscillating heat pipes (OHPs) were experimentally assessed as a passive-type heat transfer device for air-to-air heat exchange in a typical Heating Ventilation & Air conditioning system (HVAC) with adjacent air streams at different temperatures. The objective is to utilize, otherwise wasted thermal energy to pre-heat or pre-cool air in order to reduce the payload on HVAC systems, thus reducing energy consumption. OHPs can achieve effective thermal conductivities on-the-order of 10,000 W/m-K via no internal wicking structure and hence can perform aforementioned heat transfer task while providing an aerodynamic form factor. A unique working fluid with limited research inside OHPs, but with properties desirable for low grade heat fluxes, i.e. n-pentane with 70 % fill ratio, was chosen as the working fluid to achieve maximum heat transfer. Aerodynamic performance, in terms of pressure drop, was evaluated and juxtaposed with heat transfer gain/loss. The OHP thermal performance and total heat transfer for hot-environment HVAC operation was benchmarked with an empty/evacuated OHP with same overall dimensions. Results indicate that the current, atypically-long OHP is fully-capable of operating in the air-to-air convection mode for waste heat recovery for typical HVAC operating conditions. Since the OHP is passive, cost effective, and relatively aerodynamic (no fins were used), the potential cost savings for its integration into HVAC systems can be significant.


Author(s):  
Fabian Schweizer ◽  
Marius Fürst ◽  
Georg Wachtmeister

Abstract Waste heat recovery is a promising method to reduce fuel consumption and CO2 emissions in heavy-duty vehicles. An organic Rankine cycle (ORC) is used to convert the thermal energy of the exhaust gases into useable energy to support the power train. A key component of the ORC is the expansion machine where the conversion of thermal into mechanical energy takes place. In the case of volumetric expansion machines such as axial piston expanders, lubrication oil is mixed in with the working fluid to reduce friction and increase the component durability. However, the presence of oil also affects both the efficiency and the fluid dynamical behavior inside the expander. To implement a one-dimensional simulation model that considers the oil influence, a continuous flow approach is selected. Particular attention is dedicated to the inlet and outlet valve modeling, as these have to account for two-phase flow and multicomponent fluid mixtures. A valve model is built up in the simulation environment dymola based on the homogeneous nonequilibrium (HNE) approach. A virtual one-cylinder test bench is set up to calibrate and validate the model. The simulation results show good correspondence with the measurement data.


Author(s):  
Lili Yu ◽  
Weilin Zhuge ◽  
Yangjun Zhang ◽  
Jie Peng

The proton exchange membrane fuel cell (PEMFC) system is becoming one of the most potential power systems for automotive applications in the future. Though the efficiency of PEMFC is high, almost half of the hydrogen energy is taken away by coolant without being utilized. Organic Rankine Cycle (ORC) could be used for the waste heat recovery of PEMFC. The working fluid of ORC flows directly into the fuel cell stack and cool the stack as the same time. In this paper, the feasibility of R245ca as the coolant of PEMFC and working fluid of ORC is studied. A simulation model of the fluid flow and heat transfer of R245ca in PEMFC cooling plates is set up with the CFD software package FLUENT. The Volume of Fluid (VOF) model is used to simulate the two-phase flow. Results show that R245ca can efficiently remove the waste heat and ensure uniform temperature distribution in PEMFC.


2019 ◽  
Vol 14 (1) ◽  
Author(s):  
Gunabal S

Waste heat recovery systems are used to recover the waste heat in all possible ways. It saves the energy and reduces the man power and materials. Heat pipes have the ability to improve the effectiveness of waste heat recovery system. The present investigation focuses to recover the heat from Heating, Ventilation, and Air Condition system (HVAC) with two different working fluids refrigerant(R410a) and nano refrigerant (R410a+Al2O3). Design of experiment was employed, to fix the number of trials. Fresh air temperature, flow rate of air, filling ratio and volume of nano particles are considered as factors. The effectiveness is considered as response. The results were analyzed using Response Surface Methodology


2021 ◽  
Vol 11 (5) ◽  
pp. 1984
Author(s):  
Ramin Moradi ◽  
Emanuele Habib ◽  
Enrico Bocci ◽  
Luca Cioccolanti

Organic Rankine cycle (ORC) systems are some of the most suitable technologies to produce electricity from low-temperature waste heat. In this study, a non-regenerative, micro-scale ORC system was tested in off-design conditions using R134a as the working fluid. The experimental data were then used to tune the semi-empirical models of the main components of the system. Eventually, the models were used in a component-oriented system solver to map the system electric performance at varying operating conditions. The analysis highlighted the non-negligible impact of the plunger pump on the system performance Indeed, the experimental results showed that the low pump efficiency in the investigated operating range can lead to negative net electric power in some working conditions. For most data points, the expander and the pump isentropic efficiencies are found in the approximate ranges of 35% to 55% and 17% to 34%, respectively. Furthermore, the maximum net electric power was about 200 W with a net electric efficiency of about 1.2%, thus also stressing the importance of a proper selection of the pump for waste heat recovery applications.


Author(s):  
Michael Ozeh ◽  
A. G. Agwu Nnanna

Powering small electronics like mobile devices off-grid has remained a challenge; hence, there exists a need for an alternate source of powering these devices. This paper examines the efficacy of a novel nanoparticle-immobilized polyethylene wick in maintaining sufficient thermal gradient across a thermoelectric generator to power these devices with energy from waste heat. The work examines several other heat exchangers including heat pipes and loop heat pipe setups. The experimental evidence reveals that the nanoparticle-immobilized polyethylene wick is capable of generating sufficient thermal potential resulting in 5V, which is the minimum voltage required to power small mobile devices. In the opinion of the authors, this is the first ever recorded account of utilizing waste heat to generate enough voltage to power a mobile device. Experiment demonstrated that the nanoparticle-immobilized polyethylene wick showed over 40% thermoelectric voltage generation increment over a plain polyethylene wick and a metal wick in a loop heat pipe setup.


Author(s):  
Fredrik Ahlgren ◽  
Maria E. Mondejar ◽  
Magnus Genrup ◽  
Marcus Thern

Maritime transportation is a significant contributor to SOx, NOx and particle matter emissions, even though it has a quite low CO2 impact. New regulations are being enforced in special areas that limit the amount of emissions from the ships. This fact, together with the high fuel prices, is driving the marine industry towards the improvement of the energy efficiency of current ship engines and the reduction of their energy demand. Although more sophisticated and complex engine designs can improve significantly the efficiency of the energy systems in ships, waste heat recovery arises as the most influent technique for the reduction of the energy consumption. In this sense, it is estimated that around 50% of the total energy from the fuel consumed in a ship is wasted and rejected in fluid and exhaust gas streams. The primary heat sources for waste heat recovery are the engine exhaust and the engine coolant. In this work, we present a study on the integration of an organic Rankine cycle (ORC) in an existing ship, for the recovery of the main and auxiliary engines exhaust heat. Experimental data from the operating conditions of the engines on the M/S Birka Stockholm cruise ship were logged during a port-to-port cruise from Stockholm to Mariehamn over a period of time close to one month. The ship has four main engines Wärtsilä 5850 kW for propulsion, and four auxiliary engines 2760 kW used for electrical consumers. A number of six load conditions were identified depending on the vessel speed. The speed range from 12–14 knots was considered as the design condition, as it was present during more than 34% of the time. In this study, the average values of the engines exhaust temperatures and mass flow rates, for each load case, were used as inputs for a model of an ORC. The main parameters of the ORC, including working fluid and turbine configuration, were optimized based on the criteria of maximum net power output and compactness of the installation components. Results from the study showed that an ORC with internal regeneration using benzene would yield the greatest average net power output over the operating time. For this situation, the power production of the ORC would represent about 22% of the total electricity consumption on board. These data confirmed the ORC as a feasible and promising technology for the reduction of fuel consumption and CO2 emissions of existing ships.


2015 ◽  
Vol 36 (3) ◽  
pp. 25-48 ◽  
Author(s):  
Tomasz Kowalczyk ◽  
Paweł Ziółkowski ◽  
Janusz Badur

Abstract The conversion of a waste heat energy to electricity is now becoming one of the key points to improve the energy efficiency in a process engineering. However, large losses of a low-temperature thermal energy are also present in power engineering. One of such sources of waste heat in power plants are exhaust gases at the outlet of boilers. Through usage of a waste heat regeneration system it is possible to attain a heat rate of approximately 200 MWth, under about 90 °C, for a supercritical power block of 900 MWel fuelled by a lignite. In the article, we propose to use the waste heat to improve thermal efficiency of the Szewalski binary vapour cycle. The Szewalski binary vapour cycle provides steam as the working fluid in a high temperature part of the cycle, while another fluid – organic working fluid – as the working substance substituting conventional steam over the temperature range represented by the low pressure steam expansion. In order to define in detail the efficiency of energy conversion at various stages of the proposed cycle the exergy analysis was performed. The steam cycle for reference conditions, the Szewalski binary vapour cycle as well as the Szewalski hierarchic vapour cycle cooperating with a system of waste heat recovery have been comprised.


2021 ◽  
Vol 143 (9) ◽  
Author(s):  
Md. Zahurul Haq

Abstract Organic Rankine cycle (ORC)-based waste heat recovery (WHR) systems are simple, flexible, economical, and environment-friendly. Many working fluids and cycle configurations are available for WHR systems, and the diversity of working fluid properties complicates the synergistic integration of the efficient heat exchange in the evaporator and net output work. Unique guidelines to select a proper working fluid, cycle configuration and optimum operating parameters are not readily available. In the present study, a simple target-temperature-line approach is introduced to get the optimum operating parameters for the subcritical ORC system. The target-line is the locus of temperatures satisfying the pinch-point temperature difference along the length of the heat exchanger. Employing the approach, study is carried out with 38 pre-selected working fluids to get the optimum operating parameters and suitable fluid for heat source temperatures ranging from 100 °C to 300 °C. Results obtained are analyzed to get cross-correlations between key operating and performance parameters using a heat-map diagram. At the optimum condition, optimal working fluid’s critical temperature and pressure, evaporator saturation temperature, effectivenesses of the heat exchange in the evaporator, cycle, and overall WHR system exhibit strong linear correlations with the heat source temperature.


Energies ◽  
2020 ◽  
Vol 13 (6) ◽  
pp. 1317 ◽  
Author(s):  
Guillermo Valencia Ochoa ◽  
Cesar Isaza-Roldan ◽  
Jorge Duarte Forero

The waste heat recovery system (WHRS) is a good alternative to provide a solution to the waste energy emanated in the exhaust gases of the internal combustion engine (ICE). Therefore, it is useful to carry out research to improve the thermal efficiency of the ICE through a WHRS based on the organic Rankine cycle (ORC), since this type of system takes advantage of the heat of the exhaust gases to generate electrical energy. The organic working fluid selection was developed according to environmental criteria, operational parameters, thermodynamic conditions of the gas engine, and investment costs. An economic analysis is presented for the systems operating with three selected working fluids: toluene, acetone, and heptane, considering the main costs involved in the design and operation of the thermal system. Furthermore, an exergo-advanced study is presented on the WHRS based on ORC integrated to the ICE, which is a Jenbacher JMS 612 GS-N of 2 MW power fueled with natural gas. This advanced exergetic analysis allowed us to know the opportunities for improvement of the equipment and the increase in the thermodynamic performance of the ICE. The results show that when using acetone as the organic working fluid, there is a greater tendency of improvement of endogenous character in Pump 2 of around 80%. When using heptane it was manifested that for the turbine there are near to 77% opportunities for improvement, and the use of toluene in the turbine gave a rate of improvement of 70%. Finally, some case studies are presented to study the effect of condensation temperature, the pinch point temperature in the evaporator, and the pressure ratio on the direct, indirect, and fixed investment costs, where the higher investment costs were presented with the acetone, and lower costs when using the toluene as working fluid.


Sign in / Sign up

Export Citation Format

Share Document