Performance Investigation on Single Phase Pulse Detonation Engine Using Computational Fluid Dynamics

Author(s):  
Pinku Debnath ◽  
K. M. Pandey

Pulse detonation engines (PDEs) are new concept propulsion technologies and unsteady propulsion system that operates cyclically and typically consists of four stages, filling of fuel/air mixture, combustion, blow down and purging. Out of these four processes, combustion is the most crucial one since it produces reliable and repeatable detonation wave. Detonation is a supersonic combustion process which is essentially a shock front driven by the energy release from the reaction zone in the flow right behind it. It is based on supersonic mode of combustion and causes rapid burning of a fuel-air mixture, typically tens of thousands of times faster than in a flame, that utilize repetitive detonations to produce thrust or power. PDE offers the potential to provide increased performance while simultaneously reducing engine weight, cost, and complexity relative to conventional propulsion systems currently in service. It has the potential to drastically reduce the cost of orbit transfer vehicle system as well as space vehicle attitude control system and can be used for wide range of military, civil and commercial applications. Due to its obvious advantages, worldwide attention has been paid to the scientific and technical issues concerning PDE. The present study deals with the convergence and divergence nozzle effects on specific thrust and pressure of Pulse Detonation Engine (PDE) using computational fluid dynamics (CFD). Pulse Detonation Engine having 88.3cm length and 9.5cm diameter combustion chamber, convergence nozzle, detonation tube and divergence nozzle were design in Gambit 2.3.16. FLUENT 6.3 predict the flow physics of pressure and specific thrust (Fs), increase in divergence nozzle compared to convergence nozzle and specific thrust of detonation tube was changed with the change of flight Mach number. A three dimension computational unstructured grid was developed which gives the best meshing accuracy as well as computational results. RNG k-ε turbulence model was used for the mass flow rate, pressure and velocity contours analysis with standard wall function.

2016 ◽  
Vol 2016 ◽  
pp. 1-16 ◽  
Author(s):  
K. M. Pandey ◽  
Pinku Debnath

Pulse detonation engines (PDEs) are new exciting propulsion technologies for future propulsion applications. The operating cycles of PDE consist of fuel-air mixture, combustion, blowdown, and purging. The combustion process in pulse detonation engine is the most important phenomenon as it produces reliable and repeatable detonation waves. The detonation wave initiation in detonation tube in practical system is a combination of multistage combustion phenomena. Detonation combustion causes rapid burning of fuel-air mixture, which is a thousand times faster than deflagration mode of combustion process. PDE utilizes repetitive detonation wave to produce propulsion thrust. In the present paper, detailed review of various experimental studies and computational analysis addressing the detonation mode of combustion in pulse detonation engines are discussed. The effect of different parameters on the improvement of propulsion performance of pulse detonation engine has been presented in detail in this research paper. It is observed that the design of detonation wave flow path in detonation tube, ejectors at exit section of detonation tube, and operating parameters such as Mach numbers are mainly responsible for improving the propulsion performance of PDE. In the present review work, further scope of research in this area has also been suggested.


2019 ◽  
Vol 11 (4) ◽  
pp. 81-92
Author(s):  
Bharat Ankur DOGRA ◽  
Mehakveer SINGH ◽  
Tejinder Kumar JINDAL ◽  
Subhash CHANDER

Pulse Detonation Engine (PDE), is an emerging and promising propulsive technology all over the world in the past few decades. A pulse detonation engine (PDE) is a type of propulsion system that uses detonation waves to combust the fuel and oxidizer mixture. Theoretically, a PDE can be operate from subsonic to hypersonic flight speeds. Pulsed detonation engines offer many advantages over conventional air-breathing engines and are regarded as potential replacements for air-breathing and rocket propulsion systems, for platforms ranging from subsonic unmanned vehicles, long-range transportation, high-speed vehicles, space launchers to space vehicles. This article highlights the operating cycle of PDE, starting with the fuel-oxidizer mixture, combustion and Deflagration to detonation transition (DDT) followed by purging. PDE combustion process, a unique process, leads to consistent and repeatable detonation waves. This pulsed detonation combustion process causes rapid burning of the fuel-oxidizer mixture, which cannot be seen in any other combustion process as it is a thousand times faster than any other mode of combustion. PDE not only holds the capability of running effectively up to Mach 5 but it also changes the technicalities in space propulsion. The present paper is the extension of the previous study which is also a well characterized status report of PDE in different areas. The present study deals with the categorization of the design approach, computations & simulations, flow visualization, DDT & Thrust enhancement, PDRE’s, experimental detonation engines with some of the experience and research undertaken in Punjab Engineering College under the complete supervision and guidance of Prof. Tejinder Kumar Jindal followed by applications of PDE technology.


2003 ◽  
Vol 125 (4) ◽  
pp. 1075-1080 ◽  
Author(s):  
T. E. Hutchins ◽  
M. Metghalchi

Energy and exergy analyses have been performed on a pulse detonation engine. A pulse detonation engine is a promising new engine, which uses a detonation wave instead of a deflagration wave for the combustion process. The high-speed supersonic combustion wave reduces overall combustion duration resulting in an nearly constant volume energy release process compared to the constant pressure process of gas turbine engines. Gas mixture in a pulse detonation engine has been modeled to execute the Humphrey cycle. The cycle includes four processes: isentropic compression, constant volume combustion, isentropic expansion, and isobaric compression. Working fluid is a fuel-air mixture for unburned gases and products of combustion for burned gases. Different fuels such as methane and JP10 have been used. It is assumed that burned gases are in chemical equilibrium states. Both thermal efficiency and effectiveness (exergetic efficiency) have been calculated for the pulse detonation engine and simple gas turbine engine. Comparison shows that for the same pressure ratio pulse detonation engine has better efficiency and effectiveness than the gas turbine system.


2015 ◽  
Vol 772 ◽  
pp. 136-140 ◽  
Author(s):  
Pinku Debnath ◽  
Krishna Murari Pandey

Detonation combustion wave is much more energetic combustion process in pulse detonation engine combustion system. Numerous experimental, theoretical and numerical analyses have been studied in pulse detonation engine to implement in practical propulsion system. In this present computational study the simulation was carried out for deflagration flame acceleration and deflagration to detonation transition of hydrogen air combustible mixture inside the detonation tube with and without Shchelkin spiral. A three dimensional computational analysis has been done by finite volume discretization method using ANSYS Fluent 14 CFD commercial software. The LES turbulence model with second order upwind discretization scheme was adopted with standard boundary conditions for unsteady combustion wave simulations. From the computational study it was found that intensity of detonation wave velocity and dynamic pressure is higher near to the boundary of Shchelkin spiral in detonation tube. The contour plots comparisons clearly show that deflagration flame accelerates in detonation tube as present of Shchelkin spiral. The contour plots also suggest that deflagration flame velocity and pressure are less in without Shchelkin spiral in detonation tube. The accelerating detonation waves are approximately near about Chapment-Jouguet values in detonation tube with Shchelkin spiral.


2016 ◽  
Vol 9 (1) ◽  
pp. 44-54 ◽  
Author(s):  
Pinku Debnath ◽  
KM Pandey

Exergy losses during the combustion process, heat transfer, and fuel utilization play a vital role in the analysis of the exergetic efficiency of combustion process. Detonation is thermodynamically more efficient than deflagration mode of combustion. Detonation combustion technology inside the pulse detonation engine using hydrogen as a fuel is energetic propulsion system for next generation. In this study, the main objective of this work is to quantify the exergetic efficiency of hydrogen–air combustion for deflagration and detonation combustion process. Further detonation parameters are calculated using 0.25, 0.35, and 0.55 of [Formula: see text] mass concentrations in the combustion process. The simulations have been performed for converging the solution using commercial computational fluid dynamics package Ansys Fluent solver. The details of combustion physics in chemical reacting flows of hydrogen–air mixture in two control volumes were simulated using species transport model with eddy dissipation turbulence chemistry interaction. From these simulations it was observed that exergy loss in the deflagration combustion process is higher in comparison to the detonation combustion process. The major observation was that pilot fuel economy for the two combustion processes and augmentation of exergetic efficiencies are better in the detonation combustion process. The maximum exergetic efficiency of 55.12%, 53.19%, and 23.43% from deflagration combustion process and from detonation combustion process, 67.55%, 57.49%, and 24.89%, are obtained from aforesaid [Formula: see text] mass fraction. It was also found that for lesser fuel mass fraction higher exergetic efficiency was observed.


2018 ◽  
Vol 172 ◽  
pp. 02006 ◽  
Author(s):  
S. Srikrishnan ◽  
P. K. Dash ◽  
V. Jayakumar

A Pulse Detonation Engine (PDE) is a new invented propulsion device that takes advantage of the pressure rise inherent to the efficient burning of fuel-air mixtures via detonations. Detonation initiation is a critical process that occurs in the cycle of a PDE. A practical method of detonation initiation is Deflagration-to-Detonation Transition (DDT), which describes the acceleration of a subsonic deflagration created using low initiation energies to a supersonic detonation. The DDT process is not well understood due to a wide range of time and length scales involving complex chemistry, turbulence and unsteady pressure waves. This paper discuss about the effects of blocking ratio in the augmentation of detonation pressure and velocity inside a cylindrical tube of diameter 0.0254m and a length of 1 m. The blockages are rectangular in shape placed at 2/3rd distances of the length of the tube and the heights of the blockages are varied in terms of the diameter of the tube as 1/4th, 1/3rd, ½, 2/3rd and 3/4th the diameter of the tube. The setup is then analyzed in MATLAB using the physics of Friedlander’s equation, which formulate the decay time duration of pressure across the tube length, with and without the blockage. Further, a 2D CFD analysis through ANSYS Workbench is conducted which gave the effective blocking ratio in a rectangular type of blockage placed at the 2/3rd position of the length of the tube and the results are compared. For variable pressures ranging from 1 MPa to 100 MPa input, the effective pulse length is around 0.25 seconds after which the decay of pressure and temperature attain the critical limit. Also it is found that the maximum feasible velocity occurs for an inlet pressure of 10 MPa and 2/3rd height of the blockage where the corresponding outlet velocity is 4692m/s and outlet total pressure being 10.542 MPa.


2001 ◽  
Author(s):  
Timothy E. Hutchins ◽  
Mohamad Metghalchi

Abstract Energy and exergy analyses have been performed on a pulse detonation engine. A pulse detonation engine is a promising new engine, which uses a detonation wave instead of a deflagration wave for the combustion process. The high-speed supersonic combustion wave reduces overall combustion duration resulting in a nearly constant volume energy release process compared to the constant pressure process of gas turbine engines. Gas mixture in a pulse detonation engine has been modeled to execute the Humphrey cycle. The cycle includes four processes: isentropic compression, constant volume combustion, isentropic expansion and isobaric compression. Working fluid is a fuel-air mixture for unburned gases and products of combustion for burned gases. Different fuels such as methane and JP10 have been used. It is assumed that burned gases are in chemical equilibrium states. Both thermal efficiency and effectiveness (exergetic efficiency) have been calculated for the pulse detonation engine and simple gas turbine engine. Comparison shows that for the same pressure ratio pulse detonation engine has better efficiency and effectiveness than the gas turbine system.


Author(s):  
Pereddy Nageswara Reddy

Abstract A typical Pulse Detonation Engine (PDE) cycle of operation includes three basic processes: initiation and propagation of detonation wave in the Detonation Chamber (DC); a quasi-steady exhaust of detonation products from the DC at varying pressure through the supersonic nozzle; and a steady exhaust of remained detonation products at constant pressure through the nozzle while filling the DC with fresh air. In the present work, a novel method of Turbo-charging is proposed to increase the inlet pressure/density of fresh air fed into the DC in each cycle so as to increase the thrust developed per unit area of DC. The thermodynamic cycle of operation of Turbocharged Pulse Detonation Engine (TPDE) is analyzed based on quasi-steady state one dimensional formulation, and a computer code is developed in MATLAB to simulate the cycle performance at different compressor pressure ratios. Thrust per unit area of DC, the specific thrust and the fuel-based specific impulse are estimated at various flight conditions at different pressure ratios by considering C2H4/air as the fuel-oxidizer. The net thrust developed per unit area of DC increases with an increase in compressor pressure ratio, up to the pressure ratio of 4.0, at all flight conditions. The compressor pressure ratio of about 2.0 is observed to be optimum pressure ratio as TPDE develops nearly the same air-based specific thrust at this pressure ratio irrespective of flight operating conditions.


Processes ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 79
Author(s):  
Minghan Luo ◽  
Wenjie Xu ◽  
Xiaorong Kang ◽  
Keqiang Ding ◽  
Taeseop Jeong

The ultraviolet photochemical degradation process is widely recognized as a low-cost, environmentally friendly, and sustainable technology for water treatment. This study integrated computational fluid dynamics (CFD) and a photoreactive kinetic model to investigate the effects of flow characteristics on the contaminant degradation performance of a rotating annular photoreactor with a vacuum-UV (VUV)/UV process performed in continuous flow mode. The results demonstrated that the introduced fluid remained in intensive rotational movement inside the reactor for a wide range of inflow rates, and the rotational movement was enhanced with increasing influent speed within the studied velocity range. The CFD modeling results were consistent with the experimental abatement of methylene blue (MB), although the model slightly overestimated MB degradation because it did not fully account for the consumption of OH radicals from byproducts generated in the MB decomposition processes. The OH radical generation and contaminant degradation efficiency of the VUV/UV process showed strong correlation with the mixing level in a photoreactor, which confirmed the promising potential of the developed rotating annular VUV reactor in water treatment.


Sign in / Sign up

Export Citation Format

Share Document