Biomechanics of Trunk During Walking Carrying Load on One Hand Using Nonlinear Methods

Author(s):  
Vikas Yadav ◽  
Maruti Ram Gudavalli ◽  
P. K. Raju ◽  
Dan Marghitu

Activities of daily living include carrying objects using one hand. Carrying a load using one hand can alter the loading on the musculoskeletal system as well as the walking pattern. The objective of this pilot study was to quantify the ground reaction forces, electromyographic (EMG) activity of trunk muscles, and trunk motion during walking. Nine human volunteers with no symptoms of pain were recruited from the student and employee population of an academic institution. Data were recorded from 8 volunteer subjects. Participants were asked to walk at self-selected speed back and forth at their comfortable speed carrying loads varying from 0 to 25 pounds on right hand on a wooden walking platform for 30 steps/cycles. Motion data were recorded from T1, L1, L3, and S1 vertebrae at a sampling frequency of 120 Hz. Range of Motion (ROM), Correlation Dimension (CoD), and Approximate Entropy (ApEn) was computed using custom written MatLab programs. EMG data were recorded from six muscle groups bilaterally (right and left): Erector Spinae, Multifidus, Latissimus Dorsi, Internal Obliques, External Obliques and Rectus Abdominis at a frequency of 1200 Hz. Root mean square EMG values, Mean and Median Frequency of the EMG data were calculated to observe the effect of increasing load on muscle fatigue using custom developed MatLab program. Ground reaction force (GRF) data were collected using a force plate and the associated 1st peak force (Fz1), 2nd Peak force (Fz3) and minimum force (Fz2) between the two peak forces were calculated during gait cycle. The ROM values had a range from 2.6–3.2 deg. for Lumbar lateral bending (LB), 6.7–8.7 deg. for Thoracic LB. Approximate Entropy (ApEn) values ranged from 0.20–0.40 for Lumbar LB motion and 0.30–0.50 for Thoracic LB motion. Correlation Dimension (CoD) values ranged from 1.20–1.40 for lumbar LB and 1.20–1.30 for Thoracic LB. Normalized GRF increased during walking with increased load. Significance difference (P<0.05) were found for vGRF with increase in load. Motion and EMG data did not reveal any significant differences.

2020 ◽  
Vol 4 (02) ◽  
pp. E59-E66
Author(s):  
Roland van den Tillaar ◽  
Stian Larsen

AbstractThe purpose of the study was to compare kinematics and muscle activity between two variations of unilateral squats under different stability conditions. Twelve male volunteers (age: 23±5 years, mass: 80±17 kg, height: 1.81±0.11 m, strength-training experience: 4.3±1.9 years) performed four repetitions with the same external load (≈4RM). Two variations (with the non-stance leg forwards vs. backwards) were performed in a Smith-machine and free-weight condition. The variables were barbell velocity, lifting time and surface electromyography activity of the lower extremity and trunk muscles during the descending and ascending phase. The main findings were 1) peak force was higher when performing the unilateral squats in the Smith machine; 2) peak ascending barbell velocity increased from repetition 3–4 with free weight; and 3) muscle activity from the rectus femoris, vastus lateral, biceps femoris, gluteus medius, and erector spinae increased with repetitions, whereas gluteus, and medial vastus and shank muscles were affected by the conditions. It was concluded that more peak force could be produced because of increased stability. However, peak barbell velocity increased from repetition to repetition in free-weight unilateral squats, which was probably because the participants grew more comfortable. Furthermore, increased instability causes more gluteus and vastus medial activation and foot variations mainly affected the calf muscles.


2015 ◽  
Vol 9 (2) ◽  
Author(s):  
Johann Peter Kuhtz-Buschbeck ◽  
Antonia Frendel

<p>Background: Arm swing is deliberately emphasized during power walking, a popular aerobic fitness exercise. Electromyographic (EMG) activation curves of arm and shoulder muscles during power walking have not yet been examined. Aim: To describe the amount and pattern of EMG activity of upper limb muscles during power walking. Data are compared to normal walking and jogging. Method:  Twenty volunteers were examined on a treadmill at 6 km/h during (a) normal walking, (b) power walking, (c) jogging. EMG data were collected for the trapezius (TRAP), anterior (AD) and posterior deltoid (PD), biceps (BIC), triceps (TRI), latissimus dorsi (LD) and erector spinae (ES) muscles. Results:  Activity of four muscles (AD, BIC, PD, TRAP) was three- to fivefold stronger during power walking than normal walking. Smaller significant increases involved the TRI, LD and ES. Two muscles (AD, TRAP) were more active during power walking than running. Normal walking and power walking involved similar EMG patterns of PD, LD, ES, while EMG patterns of running and walking differed. Interpretation: Emphasizing arm swing during power walking triples the EMG activity of upper limb muscles, compared to normal walking. Similar basic temporal muscle activation patterns in both modes of walking indicate a common underlying motor program. </p>


2015 ◽  
Vol 9 (2) ◽  
Author(s):  
Johann Peter Kuhtz-Buschbeck ◽  
Antonia Frendel

Background: Arm swing is deliberately emphasized during power walking, a popular aerobic fitness exercise. Electromyographic (EMG) activation curves of arm and shoulder muscles during power walking have not yet been examined. Aim: To describe the amount and pattern of EMG activity of upper limb muscles during power walking. Data are compared to normal walking and jogging. Method: Twenty volunteers were examined on a treadmill at 6 km/h during (a) normal walking, (b) power walking, (c) jogging. EMG data were collected for the trapezius (TRAP), anterior (AD) and posterior deltoid (PD), biceps (BIC), triceps (TRI), latissimus dorsi (LD) and erector spinae (ES) muscles. Results: Activity of four muscles (AD, BIC, PD, TRAP) was three- to fivefold stronger during power walking than normal walking. Smaller significant increases involved the TRI, LD and ES. Two muscles (AD, TRAP) were more active during power walking than running. Normal walking and power walking involved similar EMG patterns of PD, LD, ES, while EMG patterns of running and walking differed. Interpretation: Emphasizing arm swing during power walking triples the EMG activity of upper limb muscles, compared to normal walking. Similar basic temporal muscle activation patterns in both modes of walking indicate a common underlying motor program.


1999 ◽  
Author(s):  
Maruti R. Gudavalli ◽  
Jerrilyn A. Backman ◽  
Steven J. Kirstukas ◽  
Anant V. Kadiyala ◽  
Avinash G. Patwardhan ◽  
...  

Abstract The objective of this study was to determine the electromyographic (EMG) activity of the superficial muscles during the treatment of low back patients during a conservative procedure known as the Cox flexion-distraction procedure. A total of 33 low back pain patients were recruited for this study from chiropractic and allopathic orthopedic clinics. EMG signals were collected while the patient was in a prone relaxed position, during the treatment using the flexion-distraction procedure, and during maximum voluntary exertions in the three planes (flexion, extension, left and right lateral bending, and left and right twisting). The mean values of the Root Mean Square (RMS) values of EMG ratios during treatment versus resting indicate that the muscles are active during the treatment. This activity is more than the activity at rest. However the mean values of the RMS EMG ratios (during treatment versus maximum voluntary contraction) are small indicating that the muscle activity during treatment may not influence the treatment loads. The left and right muscles in all muscle groups were similarly active. During the treatment, erector spinae muscles were the most active, followed by the external oblique, and the rectus abdominus muscles. The results from this study provide quantitative data for the muscle activity during the flexion-distraction treatment. This information can be incorporated into computer models to estimate the loads generated during the flexion-distraction treatment due to the muscle activity compared to the loads generated by the chiropractic physician.


2005 ◽  
Vol 30 (1) ◽  
pp. 33-45 ◽  
Author(s):  
Kenneth Anderson ◽  
David G. Behm

The objective of this study was to determine differences in electromyographic (EMG) activity of the soleus (SOL), vastus lateralis (VL), biceps femoris (BF), abdominal stabilizers (AS), upper lumbar erector spinae (ULES), and lumbo-sacral erector spinae (LSES) muscles while performing squats of varied stability and resistance. Stability was altered by doing the squat movement on a Smith machine, a free squat, and while standing on two balance discs. Fourteen male subjects performed the movements. Activities of the SOL, AS, ULES, and LSES were highest during the unstable squat and lowest with the Smith machine protocol (p <  0.05). Increased EMG activity of these muscles may be attributed to their postural and stabilization role. Furthermore, EMG activity was higher during concentric contractions compared to eccentric contractions. Performing squats on unstable surfaces may permit a training adaptation of the trunk muscles responsible for supporting the spinal column (i.e., erector spinae) as well as the muscles most responsible for maintaining posture (i.e., SOL). Key words: electromyography, concentric, eccentric, resistance training, stabilizers


2021 ◽  
Vol 15 ◽  
Author(s):  
Veronica Farinelli ◽  
Francesco Bolzoni ◽  
Silvia Maria Marchese ◽  
Roberto Esposti ◽  
Paolo Cavallari

Anticipatory postural adjustments (APAs) are the coordinated muscular activities that precede the voluntary movements to counteract the associated postural perturbations. Many studies about gait initiation call APAs those activities that precede the heel-off of the leading foot, thus taking heel-off as the onset of voluntary movement. In particular, leg muscles drive the center of pressure (CoP) both laterally, to shift the body weight over the trailing foot and backward, to create a disequilibrium torque pushing forward the center of mass (CoM). However, since subjects want to propel their body rather than lift their foot, the onset of gait should be the CoM displacement, which starts with the backward CoP shift. If so, the leg muscles driving such a shift are the prime movers. Moreover, since the disequilibrium torque is mechanically equivalent to a forward force acting at the pelvis level, APAs should be required to link the body segments to the pelvis: distributing such concentrated force throughout the body would make all segments move homogeneously. In the aim of testing this hypothesis, we analyzed gait initiation in 15 right-footed healthy subjects, searching for activities in trunk muscles that precede the onset of the backward CoP shift. Subjects stood on a force plate for about 10 s and then started walking at their natural speed. A minimum of 10 trials were collected. A force plate measured the CoP position while wireless probes recorded the electromyographic activities. Recordings ascertained that at gait onset APAs develop in trunk muscles. On the right side, Rectus Abdominis and Obliquus Abdominis were activated in 11 and 13 subjects, respectively, starting on average 33 and 54 ms before the CoP shift; Erector Spinae (ES) at L2 and T3 levels was instead inhibited (9 and 7 subjects, 104 and 120 ms). On the contralateral side, the same muscles showed excitatory APAs (abdominals in 11 and 12 subjects, 27 and 82 ms; ES in 10 and 7 subjects, 75 and 32 ms). The results of this study provide a novel framework for distinguishing postural from voluntary actions, which may be relevant for the diagnosis and rehabilitation of gait disorders.


Author(s):  
Darien T. Pyka ◽  
Pablo B. Costa ◽  
Jared W. Coburn ◽  
Lee E. Brown

Background: A new fitness trend incorporates stability exercises that challenges trunk muscles and introduces crawling as an exercise, but has yet to be investigated for muscle activity. Purpose: To compare the effects of static (STA), stationary (STN), and traveling (TRV) trunk exercises on muscle activation of the rectus abdominis, rectus femoris, external oblique, and erector spinae using surface electromyography (EMG). Methods: Seventeen recreationally active women (mean age ± SD = 22.4 ± 2.4 years, body mass 62.9 ± 6.9 kg, height 165.1 ± 5.8 cm) and twenty-three men (23.6 ±3.9 years, 83.2 ±17.1 kg, 177.1 ± 9.1 cm) volunteered to participate in this study. Subjects performed maximal voluntary contractions for normalization of each muscle’s EMG activity. They then performed the three exercises in random order for thirty seconds each with a two-minute rest in between. Results: For the rectus abdominis, STA was significantly lower than STN (P = 0.003) and TRV (P = 0.001). For the external oblique, STA was significantly lower than STN (P = 0.001) and TRV (P = 0.001) and STN was significantly greater than TRV (P = 0.009). For the erector spinae and rectus femoris, STA was significantly lower than STN (P = 0.001) and TRV (P = 0.001) Conclusions: There was greater muscle activation in all muscles tested in the stationary and traveling exercises versus the static. Strength and conditioning coaches and allied health professionals could potentially use stationary and traveling forms of trunk stabilization exercises as a viable strategy to increase muscle activation.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Fang-Yin Liao ◽  
Chun-Chang Wu ◽  
Yi-Chun Wei ◽  
Li-Wei Chou ◽  
Kang-Ming Chang

Falls put older adults at great risk and are related to the body’s sense of balance. This study investigated how to detect the possibility of high fall risk subjects among older adults. The original signal is based on center of pressure (COP) measured using a force plate. The falling group includes 29 subjects who had a history of falls in the year preceding this study or had received high scores on the Short Falls Efficacy Scale (FES). The nonfalling group includes 47 enrollees with no history of falls and who had received low scores on the Short FES. The COP in both the anterior–posterior and mediolateral direction were calculated and analyzed through empirical mode decomposition (EMD) up to six levels. The following five features were extracted and imported to a decision tree algorithm: root-mean-square deviation, median frequency, total frequency power, approximate entropy, and sample entropy. The results showed that there were a larger number of statistically different feature parameters, and a higher classification of accuracy was obtained. With the aid of empirical mode decomposition, the average classification accuracy increased 10% and achieved a level of 99.74% in the training group and 96.77% in the testing group, respectively.


Work ◽  
2020 ◽  
Vol 67 (4) ◽  
pp. 847-854
Author(s):  
Pattanasin Areeudomwong ◽  
Wasuphol Bootsast ◽  
Chalalai Thapthimthong ◽  
Patchareeporn Manop ◽  
Vitsarut Buttagat

BACKGROUND: While kinesio taping (KT) is used in several clinical settings to correct posture and reduce pain, KT effects during smartphone texting are unknown. OBJECTIVE: To investigate the effects among healthy young adults of KT on neck-shoulder discomfort and electromyographic (EMG) responses of neck and upper trunk muscles during smartphone texting. METHODS: Twenty-four participants performed a 30-minute texting task on a smartphone using both hands at two separate times under one of two conditions: KT on the right shoulder and no taping. Neck-shoulder discomfort was assessed, along with the normalized root mean square (NRMS) and normalized median frequency (NMF) of the right cervical erector spinae (CES), lower trapezius (LT), and serratus anterior (SA). RESULTS: Compared to baseline, both groups had significantly greater neck-shoulder discomfort, and NRMS and NMF of all muscles (p < 0.001) after performing a 30-minute texting task. Comparing between groups, the KT group experienced significantly less neck-shoulder discomfort, and demonstrated delayed deterioration of NRMS and NMF of right CES and LT muscles (p < 0.05). CONCLUSIONS: During smartphone texting, KT on the shoulder decreased neck-shoulder discomfort and delayed reduction of activation and fatigue of neck and upper trunk muscles among healthy young adults.


2019 ◽  
Vol 184 (9-10) ◽  
pp. e406-e411 ◽  
Author(s):  
Whitney M Poser ◽  
Kara A Trautman ◽  
Nathan D Dicks ◽  
Bryan K Christensen ◽  
Katie J Lyman ◽  
...  

Abstract Introduction The purpose of the current study was to examine if isometric peak force and rate of force development (RFD) were related to the ability to successfully perform a simulated casualty evacuation task in both unweighted and weighted conditions. Methods Eighteen male participants from Army Reserve Officers’ Training Corps (ROTC) completed a maximum isometric deadlift on a force plate (IRB#HE16227). Isometric peak force and RFD were calculated from ground reaction force. Two simulated casualty evacuation performance trials were then completed. The unweighted trial consisted of lifting and carrying a 75 kg dummy as quickly as possible for 50 m. The weighted trial was similar except 9 kg vests were added to both the simulation dummy and the participant to represent 18 kg of duty gear. Independent sample t-tests and Pearson correlations were performed to compare the characteristics of those who passed and failed the weighted trial. Results All of the participants (n = 18) completed the unweighted casualty evacuation trial, while 72% (n = 13) were able to complete the weighted casualty evacuation trial. The participants that successfully completed the weighted evacuation trial had significantly (p &lt; 0.05) greater isometric peak force (1420 ± 165 vs. 1076 ± 256 N) and lean mass (74.18 ± 3.89 vs. 65.34 ± 3.89 kg) when compared to participants (n = 5) that could not complete the weighted evacuating task trial. Additionally, greater Army Physical Fitness Test scores (288 ± 13 vs. 269 ± 16 arbitrary units) and significantly faster (30.34 ± 4.41 vs. 44.92 ± 10.62 seconds) unweighted evacuation trial times were observed in participants that could complete the weighted evacuation task. Peak force was also significantly correlated with lean mass (r = 0.51, p &lt; 0.05). There was no relationship between RFD and performance of the unweighted or weight trial. Conclusion Isometric deadlift peak force represents an important determinant for the success of a simulated casualty evacuation task and may be a useful marker to include in periodic fitness evaluations of military personnel.


Sign in / Sign up

Export Citation Format

Share Document