Adsorption Characteristics of Modified MiL-101(Cr) for Gas (Mainly CH4) Storage Applications

Author(s):  
How Wei Benjamin Teo ◽  
Anutosh Chakraborty ◽  
Kim Tiow Ooi

As promising material for gas storage applications, MIL-101(Cr) can further be modified by doping with alkali metal (Li+, Na+, K+) ions. However, the doping concentration should be optimized below 10% to improve the methane adsorption. This article presents (i) the synthesis of MIL-101 (Cr) Metal Organic Frameworks, (ii) the characterization of the proposed doped adsorbent materials by X-ray Diffraction, Scanning Electron Microscopy, N2 Adsorption, Thermo-Gravimetric Analyzer, and (iii) the measurements of methane uptakes for the temperatures ranging from 125 K to 303 K and pressures up to 10 bar. It is found that the Na+ doped MIL-101(Cr) exhibits CH4 uptake capacity of (i) 295 cm3/cm3 at 10 bar and 160 K and (ii) 95 cm3/cm3 at 10 bar at 298 K. This information is important to design adsorbed natural gas (ANG) storage tank under ANG-LNG (liquefied natural gas) coupling conditions.

Author(s):  
Ki-Baek Kim ◽  
Jaehwan Kim

This article reports dissolution, regeneration, and characterization of cellulose using an ionic liquid, namely 1-butyl-3-methylimidazolium chloride (BMIMCl). During dissolving process, BMIMCl takes much less time to dissolve cellulose with high degree of polymerization (DP = 4500) than other solvent system, lithium chloride/ N,N-dimethylacetamide (LiCl/DMAc). Regenerated cellulose film from BMIMCl–cellulose solution is characterized by viscosity, thermo gravimetric analyzer, X-ray diffraction, pull test, and transmittance test. Compared with LiCl/DMAc–cellulose, BMIMCl–cellulose solution has lower viscosity and its film has lower Young's modulus and yield strength. From thermo gravimetric analyzer and X-ray diffraction experiment, BMIMCl–cellulose film has impurity and X-ray diffraction pattern similar with those of LiCl/DMAc–cellulose film. BMIMCl–cellulose film exhibits higher transmittance. The ionic liquid recovery test verifies that BMIMCl is highly recoverable with 99%, which proves that BMIMCl is a green solvent. Through the bending displacement test, the BMIMCl–cellulose film shows a good actuation behavior of electro-active paper.


1998 ◽  
Vol 541 ◽  
Author(s):  
Shunxi Wang ◽  
Qingxin Su ◽  
Marc A. Robert ◽  
Thomas A. Rabson

AbstractA low temperature metal-organic decomposition process for depositing LiNbO3 thin films on diamond/Si(100) substrates is reported. X-ray diffraction studies show that the films are highly textured polycrystalline LiNbO3 with a (012) orientation. Scanning electron microscopy analyses reveal that the LiNbO3 thin films have dense, smooth surface without cracks and pores, and adhere very well to the diamond substrates. The grain size in the LiNbO3 thin films is in the range of ∼0.2-0.5 μm. The effect of the processing procedures on the surface morphology of the LiNbO3 films is investigated. Possible reasons for the elimination of microcracks in the LiNbO3 films are discussed.


2019 ◽  
Author(s):  
Christopher A. O’Keefe ◽  
Cristina Mottillo ◽  
László Fábián ◽  
Tomislav Friscic ◽  
Robert W. Schurko

NMR-enhanced crystallography enables the characterization of a novel cadmium-based, open metal-organic framework (MOF) from a solvent-free "accelerated aging" process. Whereas accelerated aging was devised as a clean, mild route for making MOFs, these results highlight how it application in materials discovery and characterization is aided by a combination of X-ray diffraction and solid-state NMR spectroscopy.<br>


2021 ◽  
Vol 12 (1) ◽  
pp. 52
Author(s):  
Arslan Munir ◽  
Ali Ahmad ◽  
Muhammad Tahseen Sadiq ◽  
Ali Sarosh ◽  
Ghulam Abbas ◽  
...  

Recent development shows that carbon-based composites are proving to be the most promising materials in hydrogen energy production, storage and conversion applications. In this study, composites of the copper-based metal-organic framework with different ratios of graphite oxide have been prepared for hydrogen storage application. The developed materials are characterized by X-ray diffraction (XRD), gravimetric thermal analysis (TGA), scanning electron microscopy (SEM) and BET. The newly developed composites have an improved crystalline structure and an increased surface area. The results of the experiment showed that the composite material MOF/GO 20% can store 6.12% of hydrogen at −40 °C.


2014 ◽  
Vol 938 ◽  
pp. 215-220 ◽  
Author(s):  
P. Devendran ◽  
T. Alagesan ◽  
K. Pandian

Bismuth sulfide(Bi2S3) nanorods(NRs) decorated on uniform shape carbon sphere(CS)have been prepared by hydrothermal method, using single source precursorpolyvinyl pyrrolidone(PVP) as a capping agent. The nanoparticles were synthesized with different ratio of capping agent at different temperatures.The prepared nanoparticles were characterized by FTIR spectroscopy,thermo gravimetric and differential thermal analysis. The crystallinity, morphology and elemental composition of the synthesized nanocrystals have been confirmed through X-ray diffraction (XRD), HRSEMand EDX. The electrochemical catalytic activity on the reduction of catechol of the synthesized Bi2S3NRs has been investigated.The electrocatalytic oxidation of catechol done with Bi2S3NRs coated CS/GCE modified by using CV and the effect of the scan rate also studied. The modified nanocomposites Bi2S3NRs on CS in GCE are act as a good sensor by detection of catechol in ultra trace level by using DPV techniques.


2014 ◽  
Vol 70 (a1) ◽  
pp. C1129-C1129
Author(s):  
Louiza Dimowa ◽  
Rositsa Nikolova ◽  
Ventsi Dyulgerov ◽  
Vladislav Kostov-Kytin ◽  
Boris Shivachev

Synthesis and characterization of porous metal organic frameworks (MOFs) has prompted considerable interest because of the possibility to design the pore size and physical/chemical properties by suitable selection of the organic linkers (ligands). In this work, we have chosen a classical solvothermal synthesis strategy involving 4-carboxyphenylboronic acid, a molecule that is analogic to the terephthalic acid, Zn- Cd- Ni-OAc metal salts and DMF as solvent. It is known that during solvothermal synthesis DMF decomposes to dimethylamine which is easily incorporated in MOF's [1], [2]. The obtained MOFs are characterized by single-crystal X-ray diffraction, X-ray powder diffraction, TG analyses, IR spectroscopy and BET analyses. Preliminary X-ray single crystal diffraction results showed that a new type of structure may be produced in function of the temperature. The Cd- structure crystalizes in the hexagonal Space group P6222, with respective parameters of a = 14.4113(12), c = 13.0416(7) Å (Fig. 1). The cadmium ion is tetra coordinated by the oxygens of the B(OH)2 and COO- moieties. The 4-carboxyphenylboronic acid is disorder and attempts to lower the symmetry to model the disorder resulted in unstable refinement. In the studied systems in addition to the reported new compound isotypical structures to MOF-5 containing 4-carboxyphenylboronic acid instead of 1,4-benzenedicarboxylate were also obtained.


2020 ◽  
Vol 3 (1) ◽  
pp. 122
Author(s):  
Iwan Sumarlan ◽  
Is Fatimah ◽  
Karna Wijaya

Synthesis and Characterization of TiO2 Coated on Clay Pillared Alumina (PILC) for Methyl Orange Photodegradation Under UV Illumination. The synthesis included both pillarization the clay with alumina and TiO2 coated on PILC using impregnation method. Some characterizations also were employed to this research such as X-Ray Diffraction (XRD), Scanning Electron Microscopy (SEM), N2 Adsorption Isotherm and UV-Visible Diffuse Reflectance (DR UV). The photocatalyst was then used to decompose waste dye, methyl orange (MO). Among three photocatalysts that were successfully synthesized, PILC Ti 1.0% had the highest activity to decompose the waste dye.


Author(s):  
Naomi Biggins ◽  
Michael Ziebel ◽  
Miguel Gonzalez ◽  
Jeffrey R. Long

<div><p>Precisely locating extra-framework cations in anionic metal–organic framework compounds remains a long-standing, yet crucial, challenge for elucidating structure-performance relationships in functional materials. Single-crystal X-ray diffraction is one of the most powerful approaches for this task, but single crystals of frameworks often degrade when subjected to post-synthetic metalation or reduction. Here, we demonstrate the growth of sizable single crystals of the robust metal–organic framework Fe<sub>2</sub>(bdp)<sub>3</sub> (bdp<sup>2−</sup> = benzene-1,4-dipyrazolate) and employ single-crystal-to-single-crystal chemical reductions to access the solvated framework materials A<sub>2</sub>Fe<sub>2</sub>(bdp)<sub>3</sub>∙<i>y</i>THF<sub> </sub>(A = Li<sup>+</sup>, Na<sup>+</sup>, K<sup>+</sup>). X-ray diffraction analysis of the sodium and potassium congeners reveals that the cations are located near the center of the triangular framework channels and are stabilized by weak cation–π interactions with the framework ligands. Freeze-drying with benzene enables isolation of activated single crystals of Na<sub>0.5</sub>Fe<sub>2</sub>(bdp)<sub>3 </sub>and Li<sub>2</sub>Fe<sub>2</sub>(bdp)<sub>3</sub> and the first structural characterization of activated metal–organic frameworks wherein extra-framework alkali metal cations are also structurally located. Comparison of the solvated and activated sodium-containing structures reveals that the cation positions differ in the two materials, likely due to cation migration that occurs upon solvent removal to maximize stabilizing cation­–π interactions. Hydrogen adsorption data indicate that these cation-framework interactions are sufficient to diminish the effective cationic charge, leading to little or no enhancement in gas uptake relative to Fe<sub>2</sub>(bdp)<sub>3</sub>. In contrast, Mg<sub>0.85</sub>Fe<sub>2</sub>(bdp)<sub>3</sub> exhibits enhanced H<sub>2</sub> affinity and capacity over the non-reduced parent material. This observation shows that increasing the charge density of the pore-residing cation serves to compensate for charge dampening effects resulting from cation–framework interactions and thereby promotes stronger cation–H<sub>2</sub> interactions.</p></div>


Sign in / Sign up

Export Citation Format

Share Document