Solid Fuel Fire Behavior Under Fixed Pressure in a Low-Pressure Chamber

Author(s):  
Rui Feng ◽  
Quanyi Liu ◽  
Runhe Tian ◽  
Kewei Chen ◽  
Rui Yang ◽  
...  

To comprehensively reveal the difference of solid fuel fire characteristics at different altitudes, fire experiments of cardboard boxes at multiple static pressures with two configurations filled with shredded office paper were conducted in a low-pressure chamber. The measured parameters are mass burning rate, radiative heat flux, oxygen concentration and heat release rate (HRR) etc. The mass burning rate divided by fire base dimension ṁ/D is correlated against the production of pressure-squared times length-cubed (P2L3) to the power of 0.29 based on current cardboard boxes fire test data. HRR of two boxes fire tests are higher than that of one box fire tests under fixed pressures. However, there are a higher peak of HRR under a fixed higher pressure for one-box fire tests while a lower peak of HRR under a higher pressure for two-box fire tests. The HRR would decrease sharply after reaching the peak.

Author(s):  
Quanyi Liu ◽  
Kewei Chen ◽  
Nan Wu ◽  
Jiusheng Yin ◽  
Rui Yang ◽  
...  

Fires at high altitude airports have attracted a lot of attention. Such fires show some special characteristics because of the coupling impact of low pressure and low oxygen levels. Some experiments, which were conducted recently at high altitude locations, such as Lhasa and in some low pressure chambers, were usually extinguished due to the limited supply of oxygen. In order to reveal the dependence of fire behavior on pressure comprehensively, a low-pressure chamber with ventilation control of 2×3×4.65m3 in volume has been developed and built, which can allow larger scale fire tests to be conducted and simulate more realistic high-altitude environment. In this study, pool fire tests using 20-cm and 30-cm-diameter pans are configured under five different static pressures, e.g. 101kPa, 75kPa, 64kPa, 38kPa and 24kPa. Each test has been repeated three times. The parameters measured include flame temperature, radiative heat flux, and mass loss etc. It is concluded that under lower pressure, mass burning rate is lower, temperature is higher, and height of the flame is higher, which demonstrated that low pressure fire is more dangerous to the buildings at high altitude airports.


Author(s):  
M.M. Nekhamin ◽  
D.L. Bondzyk

The existing difference in the models used to describe the burning rate of solid fuel particles, and, accordingly, the difference in the constants appearing in them, determines the relevance of the formulation of the relation between the constants known from the literature and the parameters that must be set in programs for CFD modeling of heat and power processes. This, in particular, relates to modeling the combustion of solid fuels in the well-known program ANSYS FLUENT. The paper outlines a possible approach to solving this problem. Bibl. 5, Fig. 3.


Author(s):  
Quanyi Liu ◽  
Wei Yao ◽  
Jiusheng Yin ◽  
Rui Yang ◽  
Hui Zhang

Airplane as one of the important transport vehicles in our life, its safety problem related to in-flight fire has attracted a wide-spread attention. The combustion behavior of the cabin fire in flight shows some special characteristics because of the high-altitude environment with low-pressure and low oxygen concentration. A low-pressure chamber of size 2 m×3 m×2 m has been built to simulate high-altitude environments, where multiple static pressures for pool fire tests can be configured in the range between standard atmospheric pressure 101.3KPa and 30KPa. Two different sizes of pool fires were tested. Then corresponding modeling were conducted by a LES code FDS V5.5 to examine the mechanism of pressure effect on the n-Heptane pool fire behavior. The burning of liquid fuel was modeled by a Clausius-Clapeyron relation based liquid pyrolysis model. The modeling data was validated against the experimental measurements. The mass burning rate of free-burning pool fire decreases with the decreasing of pressure, which was observed from the modeling to be due to the reduction of flame heat feedback to the fuel surface. Under low pressure, the fire plume temperature increases for the same burning rate. The mechanism of pressure effect on fire behavior was analyzed based on the modeling data.


Aerospace ◽  
2019 ◽  
Vol 6 (12) ◽  
pp. 127 ◽  
Author(s):  
Paravan

This work provides a lab-scale investigation of the ballistics of solid fuel formulations based on hydroxyl-terminated polybutadiene and loaded with Al-based energetic additives. Tested metal-based fillers span from micron- to nano-sized powders and include oxidizer-containing fuel-rich composites. The latter are obtained by chemical and mechanical processes providing reduced diffusion distance between Al and the oxidizing species source. A thorough pre-burning characterization of the additives is performed. The combustion behaviors of the tested formulations are analyzed considering the solid fuel regression rate and the mass burning rate as the main parameters of interest. A non-metallized formulation is taken as baseline for the relative grading of the tested fuels. Instantaneous and time-average regression rate data are determined by an optical time-resolved technique. The ballistic responses of the fuels are analyzed together with high-speed visualizations of the regressing surface. The fuel formulation loaded with 10 wt.% nano-sized aluminum (ALEX-100) shows a mass burning rate enhancement over the baseline of 55% ± 11% for an oxygen mass flux of 325 ± 20 kg/(m2∙s), but this performance increase nearly disappears as combustion proceeds. Captured high-speed images of the regressing surface show the critical issue of aggregation affecting the ALEX-100-loaded formulation and hindering the metal combustion. The oxidizer-containing composite additives promote metal ignition and (partial) burning in the oxidizer-lean region of the reacting boundary layer. Fuels loaded with 10 wt.% fluoropolymer-coated nano-Al show mass burning rate enhancement over the baseline >40% for oxygen mass flux in the range 325 to 155 kg/(m2∙s). The regression rate data of the fuel composition loaded with nano-sized Al-ammonium perchlorate composite show similar results. In these formulations, the oxidizer content in the fuel grain is <2 wt.%, but it plays a key role in performance enhancement thanks to the reduced metal–oxidizer diffusion distance. Formulations loaded with mechanically activated ALEX-100–polytetrafluoroethylene composites show mass burning rate increases up to 140% ± 20% with metal mass fractions of 30%. This performance is achieved with the fluoropolymer mass fraction in the additive of 45%.


Author(s):  
Qiuju Ma ◽  
Quanyi Liu ◽  
Runhe Tian ◽  
Junjian Ye ◽  
Rui Yang ◽  
...  

Fire safety is critical for safety of airplane operation. During an emergency landing, airplane goes through dramatic external pressure change from cruise altitude to sea level, considering the impact caused by low pressure atmosphere. The objective of this work is to examine the effect of dynamic pressure on the behavior of a horizontally burning diffusion flame over a pool fuel surface based on experimental approach. The experiments were conducted in a large-scale altitude chamber of size 2 m × 3 m × 4.65 m. The pressure rise process was examined under different dynamic pressures from respectively 38 kPa, 64 kPa and 75 kPa to 90 kPa with various pressure rise rates of 100 Pa/s, 150 Pa/s, 200 Pa/s, 250 Pa/s and 300 Pa/s, which is to simulate the airplane landing process from different altitudes. The whole system of the altitude chamber is of unique capability that the pressure in the chamber can be exactly controlled by a powerful pressure controlling system, and the oxygen concentration can maintain at the level about 20%, which are achieved through controlling inlet air flow for oxygen level and outlet gas flow for pressure (static or dynamic) level. A round steel fuel pans of 34 cm in diameter and 15 cm in height were chosen for the pool fire tests. The fuel pan was filled with 99% pure liquid n-Heptane. Cold water is added beneath the fuel layer to cool the pan and minimize the temperature rise in the fuel. Parameters such as mass, mass burning rate, chamber pressure were measured. The results of those tests demonstrated the significant impact to fire behaviors caused by high altitude or low pressure atmosphere.


Author(s):  
C. Paravan ◽  
S. Penazzo ◽  
S. Dossi ◽  
M. Stocco ◽  
L.T. DeLuca ◽  
...  

Innovative, mechanically activated Al–polytetrafluoroethylene (PTFE) composites and ammonium perchlorate (AP) coated nano-sized aluminum (C-ALEX) were produced, characterized, and tested as solid fuel additives. The ballistics of fuel formulations based on hydroxylterminated polybutadiene (HTPB) was investigated in a microburner by a time-resolved technique for regression rate (rf) data reduction. Both Al-composites show promising results in terms of rf and mass burning rate enhancement. In particular, the C-ALEX showed a percent rf increase over the baseline (HTPB) of 27% at an oxidizer mass flux of 350 kg/(m2s), without requiring dedicated dispersion procedures. This performance enhancement was nearly constant over the whole investigated range.


Author(s):  
Leonid S. Bobe ◽  
Nikolay A. Salnikov

Analysis and calculation have been conducted of the process of low-pressure reverse osmosis in the membrane apparatus of the system for recycling hygiene water for the space station. The paper describes the physics of the reverse osmosis treatment and determines the motive force of the process, which is the difference of effective pressures (operating pressure minus osmotic pressure) in the solution near the surface of the membrane and in the purified water. It is demonstrated that the membrane scrubbing action is accompanied by diffusion outflow of the cleaning agent components away from the membrane. The mass transfer coefficient and the difference of concentrations (and, accordingly, the difference of osmotic pressures) in the boundary layer of the pressure channel can be determined using an extended analogy between mass transfer and heat transfer. A procedure has been proposed and proven in an experiment for calculating the throughput of a reverse osmosis apparatus purifying the hygiene water obtained through the use of a cleaning agent used in sanitation and housekeeping procedures on Earth. Key words: life support system, hygiene water, water processing, low-pressure reverse osmosis, space station.


Author(s):  
Prabhakar Venkateswaran ◽  
Andrew D. Marshall ◽  
Jerry M. Seitzman ◽  
Tim C. Lieuwen

This work describes measurements and analysis of the turbulent consumption speeds, ST,GC, of H2/CO fuel blends. We report measurements of ST,GC at pressures and normalized turbulence intensities, u′rms/SL,0 up to 20 atm and 1800, respectively for a variety of H2/CO mixtures and equivalence ratios. In addition, we present correlations of these data using laminar burning velocities of highly stretched flames, SL,max, derived from quasi-steady leading points models. These analyses show that SL,max can be used to correlate data over a broad range of fuel compositions, but do not capture the pressure sensitivity of ST,GC. We suggest that these pressure effects are more fundamentally a manifestation of non-quasi-steady behavior in the mass burning rate at the flame leading points.


Sign in / Sign up

Export Citation Format

Share Document