Ricochet of High Speed Aluminium Projectiles From a Steel Plate

Author(s):  
Bakhtier Farouk ◽  
Steven B. Segletes

A ricochet is a rebound, bounce or skip off a surface, particularly in the case of a projectile (a bullet). Many ricochets are accidental and while the force of the deflection decelerates the projectile, it can still be energetic and almost as lethal as before the deflection. The likelihood of ricochet is dependent on many factors, including projectile shape, projectile material, spin, velocity (and distance), target material and the angle of incidence. A numerical study on aluminum projectiles ricocheting off a steel plate is presented in this paper. The numerical package LS-DYNA is used to model the process of the impact of aluminum projectile on a steel plate. The simulations are carried out for a given range of projectile velocity (250 m/s to 1500 m/s) with varying impact angles. From the numerical results the ricochet angle and the ricochet velocity is predicted in terms of the incident angle and the incident velocity. The impact velocity effect on the ricochet phenomenon is studied. The numerical results are compared with available analytical solutions of the ricochet problem available in the literature.

2021 ◽  
Vol 71 (6) ◽  
pp. 737-747
Author(s):  
Hussein Bassindowa ◽  
Bakhtier Farouk ◽  
Steven B. Segletes

A computational study of a projectile (either 2024 aluminum or TiAl6V4 titanium alloy) impacting a plate (either titanium alloy or aluminum) is presented in this paper. Projectile velocity (ranging from 250 m/s to 1500 m/s) with varying impact angles are considered. The presence of ricochet (if any) is identified over the ranges of the projectile velocity and impact angle considered. For the cases where ricochet is identified, the ricochet angle and velocity are predicted as functions of the incident angle and the incident velocity. The numerical results are compared with an analytical solution of the ricochet problem. The analytical solutions are from a model developed to predict the ballistic ricochet of a projectile (projectile) penetrator. The dynamics and the deformation of an aluminum (or a titanium alloy) projectile impacting on a finite thickness titanium alloy (or aluminum) plate are simulated. The current work is interesting in that it looks in the field of ballistics of different material combinations than are traditionally studied. The present simulations based on detailed material models for the aluminum and the titanium alloy and the impact physics modelling features in the LS-DYNA code provide interesting details regarding the projectile/plate deformations and post-impact projectile shape and geometry. The present results indicate that for no cases (for specified incoming velocities and impact angles considered) can an aluminum projectile penetrate a titanium alloy plate. The ricochet ‘mode predictions ‘obtained from the present simulations agree well with the ricochet ‘mode predictions’ given in an analytical model.


2006 ◽  
Author(s):  
Claudio Zanzi ◽  
Pablo Go´mez ◽  
Julia´n Palacios ◽  
Joaqui´n Lo´pez ◽  
Julio Herna´ndez

A numerical study of the impact of shallow-water waves on vertical walls is presented. The air-liquid flow was simulated using a code for incompressible viscous flow, based on a local level set algorithm and a second-order approximate projection method. The level set transport and reinitialization equations were solved in a narrow band around the interface using an adaptive refined grid. The wave is assumed to be generated by a plunger which is accelerated in an open channel containing water. An arbitrary Lagrangian-Eulerian method was used to take into account the relative movement between the plunger and the end wall of the channel. The evolution of the free surface was visualized using a laser light sheet and a high-speed camera, with a sampling frequency of 1000 Hz. Several simulations were carried out to investigate the influence of the shape of the wave approaching the wall on the relevant quantities associated with the impact. The wave shape just before the impact was changed varying the total length of the channel. The results are compared with experimental results and with results obtained by other authors.


2021 ◽  
pp. 204141962110420
Author(s):  
Brian Terranova ◽  
Len Schwer ◽  
Andrew Whittaker

Data from the Tsubota et al. (1993) experiments provided the basis for a numerical study that investigated the impact response of steel-plate lined, reinforced concrete panels using the SPH formulation in LS-DYNA. The simulated tests involved 50 mm (1.97 in), 70 mm (2.76 in), and 90 mm (3.54 in) thick reinforced concrete (RC) panels with steel liners and one 50-mm thick benchmark RC panel. Three of the five panels had a steel liner attached to the back face and one had a steel liner on both faces. The panels were normally impacted by a 39.6 mm (1.56 in) diameter projectile at a velocity of 170 m/s (6693 in/s). Reasonable predictions of observed damage, including perforation, liner fracture or bulging, and concrete scabbing were achieved using the MAT072R3 concrete material model. The effectiveness of adding steel liners to a concrete panel to prevent perforation and scabbing resulting from projectile impact was investigated using the numerical model and MAT072R3. Installing a steel liner on the back face of a panel, with a reinforcement ratio equal to that of the internal reinforcement, is an effective method to mitigate scabbing but has little effect on perforation resistance.


2006 ◽  
Vol 524-525 ◽  
pp. 167-172 ◽  
Author(s):  
Sébastien Rouquette ◽  
Emmanuelle Rouhaud ◽  
Hervé Pron ◽  
Manuel François ◽  
Christian Bissieux ◽  
...  

This work presents an experimental and numerical study of the thermo-mechanical problem of a steel plate impacted by a shot. The temperature rise is estimated and its effect on the compressive residual stress is analyzed. The simulations show that the value of the compressive residual stresses at the surface of the plate is modified when thermo-mechanical effects are included in the model as compared with simulation including hardening effects only. To validate this numerical study, an experimental device has been developed to measure the temperature rise after the impact. The experiment consists of the impact of a shot on a metallic plate. The temperature measurement is performed by an infrared camera located on the side of the plate opposite to the impact. Comparison between these experimental measurements and the numerical solution gives good agreement (to within 5%).


Author(s):  
M Raguraman ◽  
A Deb ◽  
G Jagadeesh

This article deals with a simulation-based study of the impact of projectiles on thin aluminium plates using LS-DYNA by modelling plates with shell elements and projectiles with solid elements. In order to establish the required modelling criterion in terms of element size for aluminium plates, a convergence study of residual velocity has been carried out by varying mesh density in the impact zone. Using the preferred material and meshing criteria arrived at here, extremely good prediction of test residual velocities and ballistic limits given by Gupta et al. (2001) for thin aluminium plates has been obtained. The simulation-based pattern of failure with localized bulging and jagged edge of perforation is similar to the perforation with petalling seen in tests. A number of simulation-based parametric studies have been carried out and results consistent with published test data have been obtained. Despite the robust correlation achieved against published experimental results, it would be prudent to conduct one's own experiments, for a final correlation via the present modelling procedure and analysis with the explicit LS-DYNA 970 solver. Hence, a sophisticated ballistic impact testing facility and a high-speed camera have been used to conduct additional tests on grade 1100 aluminium plates of 1 mm thickness with projectiles of four different nose shapes. Finally, using the developed numerical simulation procedure, an excellent correlation of residual velocity and failure modes with the corresponding test results has been obtained.


2011 ◽  
Vol 354-355 ◽  
pp. 579-584 ◽  
Author(s):  
Jing Yin Li ◽  
Qiang Han ◽  
Yan Jie Zhao ◽  
Xiao Fang Yuan

The results of the experimental investigations and numerical simulations of droplet impact on a stationary horizontal surface are presented. The impact process of a droplet with high impact energy on a horizontal surface was photographed by a high-speed CCD. In addition, two-dimensional numerical simulation of the impact process was also performed using the VOF model. Comparison between the experimental and numerical results shows that the chosen computational model is suitable to simulate such impact processes. Furthermore, the effect of the droplet impact velocity and diameter on the impact process was studied in detailed. The numerical results show that the variation in droplet impact velocity has a significant effect on the maximum spread factor and spread speed, whereas, the variation in droplet diameter considerably influences the maximum spread factor and the oscillation of the drop in the receding phase.


Author(s):  
Yongqiang Han ◽  
Yonghui Xie ◽  
Di Zhang

In this study an axisymmetric model is set up to study the impact of a spherical water droplet with a planar deformable solid surface using the Lagrange-Euler coupling method which is based on a penalty formulation. The diameter and velocity of the droplet are 0.4 mm and 500 m/s respectively, while the solid is a kind of steam turbine blade material. The generated pressure distribution in the droplet and its variation with time, the formation of lateral jet, the deformation and stress distribution in the solid are obtained and investigated. It is shown that the compressibility of the droplet and the solid plays a significant role during the impact. The water-hammer pressure and the maximum contact edge pressure are calculated and in good agreement with the existing theoretical predictions. The calculated contact radius for shock departure is larger than that of the conventional theoretical prediction, which is analyzed and attributable to the radial motion of the liquid in the compressed region. The formation of the high-speed lateral jet is calculated and the time for the observable jetting is much later than that of the shock departure. This delay is discussed and the reason needs more research. The pressure of the contact edge region remains highest even after a considerable time of shock departure and lateral jetting. In the mean time, a saucer-shaped depression is generated in the center of the impact. The stress waves in solid move faster even before shock departure in the liquid. This causes disturbance of the solid surface before the high-speed lateral jetting and provides site for the scouring action of it, and subsequently may cause material damage and erosion.


Author(s):  
Liang Xue ◽  
Dapeng Liu ◽  
Hohyung Lee ◽  
Da Yu ◽  
Satish Chaparala ◽  
...  

Glass is widely used as cover glass to protect the smartphones, tablets, PCs, and TVs from everyday wear and tear nowadays. There has been an increasing effort to understand the global behavior of glass substrate under impact, but the behavior of the edge for the thin glass has rarely been touched. In this study, the dynamic response of the glass edge when impacted with 1.75-inch steel ball from different heights (different potential energy) and different angles is studied. High-speed camera is applied for the direct visualization of the whole impact process. The Digital Image Correlation (DIC) method enables to obtain displacements (in-plane displacement and out-of-plane displacement) of the glass during the impact process. The failure mode for the edge impact is found to be predominantly buckling. The tape used in this study decreases wave propagation from the impact location. In addition, the FEA model of edge impact test is developed in ANSYS/LS-DYNA™.


2021 ◽  
Author(s):  
Mahdi Takaffoli

Solid particle erosion occurs when small high speed particles impact surfaces. It can be either destructive such as in the erosion of oil pipelines by corrosion byproducts, or constructive such as in abrasive jet machining processes. Two dimensional finite element (FE) models of single rhomboid particles impact on a copper target were developed using two different techniques to deal with the problem of element distortion: (i) element deletion, and (ii) remeshing. It was found that the chip formation and the material pile-up, two phenomena that cannot be simulated using a previously developed rigid-plastic model, could be simulated using the FE models, resulting in a good agreement with experiments performed using a gas gun. However, remeshing in conjunction with a failure model caused numerical instabilities. The element deletion approach also induced errors in mass loss due to the removal of distorted elements. To address the limitations of the FE approach, smoothed particle hydrodynamics (SPH) which can better accommodate large deformations, was used in the simulation of the impact of single rhomboid particles on an aluminum alloy target. With appropriate constitutive and failure parameters, SPH was demonstrated to be suitable for simulating all of the relevant damage phenomena observed during impact experiments. A new methodology was developed for generating realistic three dimensional particle geometries based on measurements of the size and shape parameter distributions for a sample of 150 µm nominal diameter angular aluminum oxide powder. The FE models of these generated particles were implemented in a SPH/FE model to simulate non-overlapping particle impacts. It was shown that the simulated particles produced distributions of crater and crater lip dimensions that agreed well with those measured from particle blasting experiments. Finally, a numerical model for simulating overlapping impacts of angular particles was developed and compared to experimental multi-particle erosion tests, with good agreement. An investigation of the simulated trajectory of the impacting particles revealed various erosion mechanisms such as the micromachining of chips, the ploughing of craters, and the formation, forging and knocking off crater lips which were consistent with previously noted ductile solid particle erosion mechanisms in the literature.


Sign in / Sign up

Export Citation Format

Share Document