Simulation of projectile impact on steel plate-lined, reinforced concrete panels using the smooth particle hydrodynamics formulation

2021 ◽  
pp. 204141962110420
Author(s):  
Brian Terranova ◽  
Len Schwer ◽  
Andrew Whittaker

Data from the Tsubota et al. (1993) experiments provided the basis for a numerical study that investigated the impact response of steel-plate lined, reinforced concrete panels using the SPH formulation in LS-DYNA. The simulated tests involved 50 mm (1.97 in), 70 mm (2.76 in), and 90 mm (3.54 in) thick reinforced concrete (RC) panels with steel liners and one 50-mm thick benchmark RC panel. Three of the five panels had a steel liner attached to the back face and one had a steel liner on both faces. The panels were normally impacted by a 39.6 mm (1.56 in) diameter projectile at a velocity of 170 m/s (6693 in/s). Reasonable predictions of observed damage, including perforation, liner fracture or bulging, and concrete scabbing were achieved using the MAT072R3 concrete material model. The effectiveness of adding steel liners to a concrete panel to prevent perforation and scabbing resulting from projectile impact was investigated using the numerical model and MAT072R3. Installing a steel liner on the back face of a panel, with a reinforcement ratio equal to that of the internal reinforcement, is an effective method to mitigate scabbing but has little effect on perforation resistance.

Author(s):  
Huiyun Li ◽  
Guangyu Shi

The steel plate reinforced concrete (SC) walls and roofs are effective protective structures in nuclear power plants against aircraft attacks. The mechanical behavior of the concrete in SC panels is very complicated when SC panels are under the action of impacting loading. This paper presents a dynamic material model for concrete subjected to high-velocity impact, in which pressure hardening, strain rate effect, plastic damage, and tensile failure are taken into account. The loading surface of the concrete undergoing plastic deformation is defined based on the extended Drucker–Prager strength criterion and the Johnson–Cook material model. The associated plastic flow rule is utilized to evaluate plastic strains. Two damage parameters are introduced to characterize, respectively, the plastic damage and tensile failure of concrete. The proposed concrete model is implemented into the transient nonlinear dynamic analysis code ls-dyna. The reliability and accuracy of the present concrete material model are verified by the numerical simulations of standard compression and tension tests with different confining pressures and strain rates. The numerical simulation of the impact test of a 1/7.5-scale model of an aircraft penetrating into a half steel plate reinforced concrete (HSC) panel is carried out by using ls-dyna with the present concrete model. The resulting damage pattern of concrete slab and the predicted deformation of steel plate in the HSC panel are in good agreement with the experimental results. The numerical results illustrate that the proposed concrete model is capable of properly charactering the tensile damage and failure of concrete.


2013 ◽  
Vol 818 ◽  
pp. 30-36 ◽  
Author(s):  
Yao Ke Wen ◽  
Cheng Xu ◽  
Ai Jun Chen ◽  
Shu Wang

A series of ballistic tests were performed to investigate the bulletproof performance of UHMWPE composites. The temporal evolution of the UHMWPE composite plate back-face bulge height and diameter were captured by high-speed photography. The experiments show the composite plate were perforated when the impact velocity greater than 880m/s. The maximum bulge height and diameter can reach to 3.63-8.23mm and 37-64.5mm at the experimental velocity range , respectively. After that, the numerical model was built with composite material model MAT59 in LS-DYNA and stress based contact failure between plies were adopted to model the delamination mechanism. The number of plies of numerical model shows a strong dependency on the numerical results. Comparisons between numerical predictions and experimental results in terms of bulge height and diameter are presented and discussed. The maximum bulge diameter is good agreement with experiment, but the computational results under predict the maximum bulge height. The computational analysis show the damage development of the plate penetration by the projectile is shearing dominated at first, then the plate undergoes delamination and stretching in the later part of the impact process. The von mises stress at front and back face of the plate were also studied.


2018 ◽  
Vol 206 ◽  
pp. 01014
Author(s):  
Ahmed K. Taha ◽  
Zhengguo Gao ◽  
Dahai Huang

Aluminum foam is a lightweight material with high energy absorption capacity. In this study A Nonlinear three-dimensional hydrocode numerical simulation was carried out using autodyn-3d, which is an extensive code dealing with explosion problems. In this simulation, a high explosive material (comp B) is blasted against several concrete panels. The model was first validated using experimental tests carried out by Chengqing and has shown good results. Several numerical tests were carried out to study two parameters that affect the deflection of reinforced concrete panels. The parameters included are the thickness of concrete target and the thickness of steel plate. The results showed that increasing the thickness of the steel plate has an insignificant effect on the deflection of the reinforced concrete target while increasing the thickness of the concrete panel has a significant effect on the deflection of the concrete target.


2004 ◽  
Vol 228 (1-3) ◽  
pp. 225-244 ◽  
Author(s):  
Masahiko Ozaki ◽  
Shodo Akita ◽  
Hiroshi Osuga ◽  
Tatsuo Nakayama ◽  
Naoyuki Adachi

Author(s):  
Li Guoqiang ◽  
Zhuang Dajie ◽  
Wang Xuexin ◽  
Meng Dongyuan ◽  
Zhang Jiangang ◽  
...  

According to the requirements of Chinese GB11806 and IAEA’s SSR-6, the packages for radioactive materials transport shall be tested to demonstrate the ability to withstand transport accidents. A small facility and a large one for package impact test have been designed and constructed to conduct the free drop test I experiment required in the GB11806 and SSR-6. The target of the smaller facility is a reinforced concrete component with volume of 3800mm × 3550mm × 3500mm. It is riveted by steel plate marked Q460 with volume of 3500mm × 3250mm × 100mm at surface. Total mass of the target is about 130t. The hoisting facility is mobile crane. The facility is used for the impact test of package within 13t. The target of the larger facility is a reinforced concrete component with volume of 11000mm × 7350mm × 7000mm. Steel plate marked Q460 with a volume of 11000mm × 5380mm × 100mm was anchored at concrete component top. Total mass of the target is about 1400t. The maximum height of the lifting hook in tower is 17.1m. The larger facility is used for the impact test of package within 130t. The two facilities for package impact test are both equipped with acceleration and stress measuring system, image measuring instrument, and geometrical measuring system. These two facilities have been used to conduct a lot of impact test of small packages weighing less than 12t. Some experience in construction and experiment has been concluded.


2006 ◽  
Vol 524-525 ◽  
pp. 167-172 ◽  
Author(s):  
Sébastien Rouquette ◽  
Emmanuelle Rouhaud ◽  
Hervé Pron ◽  
Manuel François ◽  
Christian Bissieux ◽  
...  

This work presents an experimental and numerical study of the thermo-mechanical problem of a steel plate impacted by a shot. The temperature rise is estimated and its effect on the compressive residual stress is analyzed. The simulations show that the value of the compressive residual stresses at the surface of the plate is modified when thermo-mechanical effects are included in the model as compared with simulation including hardening effects only. To validate this numerical study, an experimental device has been developed to measure the temperature rise after the impact. The experiment consists of the impact of a shot on a metallic plate. The temperature measurement is performed by an infrared camera located on the side of the plate opposite to the impact. Comparison between these experimental measurements and the numerical solution gives good agreement (to within 5%).


2011 ◽  
Vol 471-472 ◽  
pp. 1142-1146 ◽  
Author(s):  
Sebastian Stanislawek ◽  
Andrzej Morka ◽  
Tadeusz Niezgoda

The paper presents a numerical study of a double layer composite panels impacted by a AP (Armor Piercing) 51WC projectile. The standard panel is built with aluminum and Al2O3 ceramic continuum layers while the studied model consists of the same aluminum plate but the front one is built with a set of hexagonal ceramic bars. The bar width and the impact position influence on the ballistic resistance are analyzed and compared with the reference solution. The problem has been solved with the usage of the modeling and simulation methods as well as finite elements method implemented in LS-DYNA software. Space discretization for each option was built by three dimension elements guarantying satisfying accuracy of the calculations. For material behavior simulation specific models including the influence of the strain rate and temperature changes were considered. Projectile Tungsten Curbide and aluminum plate material were described by Johnson-Cook model and ceramic target by Johnson-Holmquist model. In the studied panels the area surrounding back edges was supported by a rigid wall. The obtained results show interesting properties of the examined structures considering their ballistic resistance. All tests has given clear results about ballistic protection panel response under WC projectile impact. Panels consisting of sets of hexagonal ceramic bars are slightly easier to penetrate, reference model is stronger by 19% for smaller bars and by only 7% for bigger rods. Despite this fact, the ceramic layer is much less susceptible to overall destruction what makes it more applicable for the armor usage. Furthermore, little influence of the projectile impact point and consequently a part of the bar which is first destroyed is proved.


Sign in / Sign up

Export Citation Format

Share Document