Football Helmet Energy Absorption Degradation and Impact Performance Resulting From High Humidity and Temperature

Author(s):  
Kenneth J. Saczalski ◽  
Mark N. West ◽  
Todd K. Saczalski ◽  
Joseph L. Burton ◽  
Mark C. Pozzi

The helmet is the primary means for providing head impact protection to adult and youth football players through use of energy absorbing (EA) materials placed in a crush zone located between the head and helmet shell. Ultimate safety performance of the helmet requires uniformly consistent, repeatable and reliable attenuation of the impact energy so as to minimize head injury potential throughout the helmet. However, quasi-static materials tests and dynamic helmet testing results, reported on herein, show that EA materials of current and older helmet designs are susceptible to large levels of EA degradation, or softening, when subjected to a “hot-wet” condition caused by high temperatures and high humidity, such as that produced from the sweat of a player. Depending on the size of the crush zone, and other factors, this condition can lead to increased head impact loads. The standard football helmet certification criteria do not address the issue of “hot-wet” EA degradation. Dynamic helmet testing analyzed in this study consisted of two methods. One method used the standard helmet certification approach where a human responding head form and helmet are dropped vertically, along a twin guide wire set-up, onto a soft rubber pad. The second method employed use of a human responding Hybrid-III head and neck that was incorporated into a free pendulum impact set-up where impact took place on a non-yielding surface and both direct contact impact injury potential and rotational injury aspects of the helmet performance were measured. The dynamic tests were conducted with various size head forms, energy levels, and impact speeds that ranged from the 5.5 m/s level, used in helmet certification, on up to higher speeds of 7.0 m/s that is more consistent with a “5-second 40-yard dash” speed. Based on equal kinetic energy impact comparisons, the two dynamic approaches showed that helmets that were impacted onto the soft elastomeric pad surface produced artificially lower indications of head injury severity than did the helmets tested against the non-yielding surface. The results also showed large variations and inconsistencies of impact attenuation within a specific helmet design, depending on impact location or region being tested. Also, dynamic impact testing was applied with both ambient and 3-hour “hot-wet” soak conditions applied to the EA padding of adult and youth helmets. These results showed that the relatively newer EA pad designs and the older type elastomeric foam EA pads were sensitive to “hot-wet” degradation for soak times as low as 3-hours, which is consistent with game or practice time situations. Finally, as noted above, it was shown that, depending on the size of the crush zone, this EA degradation factor could lead to increased head loads and injury severity measures. The results suggest the need for additional research on the above to enhance helmet safety.

Author(s):  
Kenneth J. Saczalski ◽  
Mark N. West ◽  
Todd K. Saczalski ◽  
Luis Frausto ◽  
Mark C. Pozzi

Design of an optimally safe football helmet system requires an awareness and evaluation of the factors and variables that can adversely affect the impact attenuating performance of energy absorbing (EA) pad materials needed to minimize transmission of linear and rotational forces applied to the head so that risk of head injury is reduced. For instance, player head sweating can induce high temperatures and moisture within a helmet system (i.e. a Hot-Wet condition) which can result in degradation of helmet EA capacity and cause increased measures of head injury risk levels, which are often used for comparative evaluation of helmet designs. In this study, a “multivariable” experimental method was utilized to demonstrate an efficient means for assessment and comparison of currently representative adult and youth football helmet system designs when subjected to a range of variables that included, among other factors: temperature-moisture effects; impact energy; and, repeat impacts. Both quasi-static (QS) compression testing of commonly used EA materials and dynamic impact testing of full helmet systems were conducted and the results are presented in Tables and graphic form. The EA pad types that were QS tested included: Thermoplastic-Polyurethane (TPU) “waffle shaped” EA pad configurations; load rate sensitive “Gel” foam padding; and, dual and single density elastomeric foam padding. Dynamic helmet repeat impact tests were conducted by using a pendulum impact test device where various helmet designs were mounted to a Hybrid-III head and neck system and impacted against a non-yielding surface at energy levels of 108J and 130J after being subjected to ambient and Hot-Wet conditions. The QS tests showed that a short Hot-Wet soak time of only a few hours’ noticeably diminished EA levels. Also, the dynamic full helmet system testing demonstrated that the “Hot-Wet” condition tended to degrade helmet impact attenuation performance such that, depending on the size and type of EA material provided in the crush zone, head injury risk measures tended to increase. Finally, examples of the use and benefits of a “multivariable” experimental method for helmet injury risk assessment, not reported on previously, are provided.


Brain Injury ◽  
2015 ◽  
Vol 29 (13-14) ◽  
pp. 1648-1653 ◽  
Author(s):  
Pål Rønning ◽  
Per Ole Gunstad ◽  
Nils-Oddvar Skaga ◽  
Iver Arne Langmoen ◽  
Knut Stavem ◽  
...  

2013 ◽  
Vol 135 (11) ◽  
Author(s):  
T. P. Hutchinson

Impact testing of pedestrian headforms is usually conducted at one velocity and with one mass of headform, but real impacts occur at a range of velocities and masses. A method is proposed to predict the Head Injury Criterion (HIC) and similar quantities at other velocities from their values observed under test conditions. A specific assumption is made about acceleration during the impact as related to displacement, its differential (instantaneous velocity), mass of headform, and initial velocity: namely, that it is the product of a power function of displacement (representing a possibly nonlinear spring) and a term that includes a type of damping. This equation is not solved, but some properties of the solution are obtained: HIC, maximum acceleration, and maximum displacement are found to be power functions of mass of headform and initial velocity. Expressions for the exponents are obtained in terms of the nonlinearity parameter of the spring. Simple formulae are obtained for the dependence of HIC, maximum acceleration, and maximum displacement on velocity and mass. These are relevant to many types of impact.


2008 ◽  
Vol 22 (7) ◽  
pp. 653-662 ◽  
Author(s):  
Toril Skandsen ◽  
Tom Ivar Lund ◽  
Oddrun Fredriksli ◽  
Anne Vik

1996 ◽  
Vol 2 (6) ◽  
pp. 494-504 ◽  
Author(s):  
Alan M. Haltiner ◽  
Nancy R. Temkin ◽  
H. Richard Winn ◽  
Sureyya S. Dikmen

AbstractThis study examined the relationship of posttraumatic seizures and head injury severity to neuropsychological performance and psychosocial functioning in 210 adults who were prospectively followed and assessed 1 year after moderate to severe traumatic head injury. Eighteen percent (n = 38) of the patients experienced 1 or more late seizures (i.e., seizures occurring 8 or more days posttrauma) by the time of the 1-year followup. As expected, the head injured patients who experienced late posttraumatic seizures were those with the most severe head injuries, and they were significantly more impaired on the neuropsychological and psychosocial measures compared to those who remained seizure free. However, after the effects of head injury severity were controlled, there were no significant differences in neuropsychological and psychosocial outcome at 1 year as a function of having seizures. These findings suggest that worse outcomes in patients who develop posttraumatic seizures up to 1 year posttrauma largely reflect the effects of the brain injuries that cause seizures, rather than the effect of seizures. (JINS, 1996, 2, 494–504.)


1999 ◽  
Vol 21 (8) ◽  
pp. 742-754 ◽  
Author(s):  
Andrew Beaumont ◽  
Anthony Marmarou ◽  
Andrea Czigner ◽  
Mazayuki Yamamoto ◽  
Kate Demetriadou ◽  
...  

2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Yi Hua ◽  
Praveen Akula ◽  
Matthew Kelso ◽  
Linxia Gu

The closed head impact (CHI) rat models are commonly used for studying the traumatic brain injury. The impact parameters vary considerably among different laboratories, making the comparison of research findings difficult. In this work, numerical CHI experiments were conducted to investigate the sensitivities of intracranial responses to various impact parameters (e.g., impact depth, velocity, and position; impactor diameter, material, and shape). A three-dimensional finite element rat head model with anatomical details was subjected to impact loadings. Results revealed that impact depth and impactor shape were the two leading factors affecting intracranial responses. The influence of impactor diameter was region-specific and an increase in impactor diameter could substantially increase tissue strains in the region which located directly beneath the impactor. The lateral impact could induce higher strains in the brain than the central impact. An indentation depth instead of impact depth would be appropriate to characterize the influence of a large deformed rubber impactor. The experimentally observed velocity-dependent injury severity could be attributed to the “overshoot” phenomenon. This work could be used to better design or compare CHI experiments.


2016 ◽  
Vol 725 ◽  
pp. 122-126 ◽  
Author(s):  
Kumar V. Akshaj ◽  
Chandra Khan Vishwas ◽  
G. Balaganesan ◽  
M.S. Sivakumar

This paper discusses the energy absorption during low velocity impact on target with combinations of PU foam, SiC inserts/plate bonded to GFRP composite backing. SiC inserts and SiC plates are bonded as front layer to enhance energy absorption. Low velocity impact is conducted by using drop mass set-up and mild steel spherical nosed impactor is used for impact testing of target in fixed boundary conditions. Failure in the case of SiC inserts is local as only the insert under the impact is damaged and nearby areas are intact. However, in the other cases, the SiC plate is damaged along with fiber failure and delamination on the composite backing layer. It is observed that the energy absorbed by SiC plate is higher than that absorbed by SiC inserts layered target.


2021 ◽  
Vol 5 (02) ◽  
pp. E37-E44
Author(s):  
Florian Beaudouin ◽  
Daniel Demmerle ◽  
Christoph Fuhr ◽  
Tobias Tröß ◽  
Tim Meyer

AbstractTo assess head impact incidents (HIIs) and to distinguish diagnosed head injuries from other incidents, a video observation analysis of match HIIs was conducted in the German Bundesliga (2017/18 season). Video recordings of each match were screened to identify the respective events. Head injury data were identified by a prospective injury registry. HII and head injury incidence rates (IR) were calculated with 95% CIs. The total number of HIIs was 1,362 corresponding to an IR of 134.9/1000 match hours (95% CI 127.9–142.2). In 123 HII (IR 12.2, 95% CI 10.2–14.5) the contact was classified as severe. Head contact with the opponent was the most frequent cause (85%). The most frequent mechanism was in 44% (combined) the arm and elbow-to-head, followed by head-to-head and hand-to-head contacts (each 13%). In 58%, the HIIs occurred during header duels. Twenty-nine head injuries were recorded (IR 2.9, 95% CI 2.0–4.1). Concussions/traumatic brain injuries accounted for 48%, head/facial fractures 24%, head/facial contusions 21%, and lacerations/abrasions 7%. The number of HIIs not classified as concussions/more severe trauma was high. Identification of HIIs and head injury severity should be improved during on-field assessment as many head injuries might go unrecognised based on the large number of HIIs.


Sign in / Sign up

Export Citation Format

Share Document