Cellulose Nanocrystals Assisted Preparation of Electrochemical Energy Storage Electrodes

Author(s):  
Danny Illera ◽  
Victor Fontalvo ◽  
Humberto Gomez

Renewable energy sources demands sustainable energy storage technologies through the incorporation of low-cost and environment-friendly materials. In this regard, cellulose nanocrystals (CN), which are needle-shaped nanostructure derived from cellulose-rich resources, are extracted by sulfuric acid hydrolysis of biomass and used as both template and binder for the construction of electrochemical capacitors electrodes. A composite material is synthetized comprising CN and a conjugated electroactive polymer (CEP) to overcome the electrical insulating properties of cellulose as well as to exploit enhanced electrochemical activity by increased electrode surface-area. A one-step in-situ film synthesis protocol is evaluated by performing simultaneous polymerization and film deposition. The effect of proportion of starting components are evaluated through statistical Response Surface Methodology towards optimizing the electrochemical performance. Depending on the mass proportion of the starting components, a conducting network could be created by surface coating of the CEP on the whiskers during polymerization. Electrochemical measurements suggest an increase in specific surface area by at least a factor of two relative to bare CEP as a consequence of the template role of cellulose. Therefore, adjustment of the proposed one-step synthesis parameters allows tuning the material properties to meet specific application requirements regarding electrochemical performance.

RSC Advances ◽  
2020 ◽  
Vol 10 (38) ◽  
pp. 22836-22847
Author(s):  
P. Nagaraju ◽  
M. Arivanandhan ◽  
A. Alsalme ◽  
A. Alghamdi ◽  
R. Jayavel

Nanoparticles of α-molybdenum oxide (α-MoO3) are directly grown on graphene sheets using a surfactant-free facile one step ultrafast in situ microwave irradiation method.


2019 ◽  
Vol 11 (1) ◽  
Author(s):  
Mingguang Wu ◽  
Wei Ni ◽  
Jin Hu ◽  
Jianmin Ma

Abstract Several emerging energy storage technologies and systems have been demonstrated that feature low cost, high rate capability, and durability for potential use in large-scale grid and high-power applications. Owing to its outstanding ion conductivity, ultrafast Na-ion insertion kinetics, excellent structural stability, and large theoretical capacity, the sodium superionic conductor (NASICON)-structured insertion material NaTi2(PO4)3 (NTP) has attracted considerable attention as the optimal electrode material for sodium-ion batteries (SIBs) and Na-ion hybrid capacitors (NHCs). On the basis of recent studies, NaTi2(PO4)3 has raised the rate capabilities, cycling stability, and mass loading of rechargeable SIBs and NHCs to commercially acceptable levels. In this comprehensive review, starting with the structures and electrochemical properties of NTP, we present recent progress in the application of NTP to SIBs, including non-aqueous batteries, aqueous batteries, aqueous batteries with desalination, and sodium-ion hybrid capacitors. After a thorough discussion of the unique NASICON structure of NTP, various strategies for improving the performance of NTP electrode have been presented and summarized in detail. Further, the major challenges and perspectives regarding the prospects for the use of NTP-based electrodes in energy storage systems have also been summarized to offer a guideline for further improving the performance of NTP-based electrodes.


2020 ◽  
Vol 4 (10) ◽  
pp. 5313-5326 ◽  
Author(s):  
S. Rajkumar ◽  
E. Elanthamilan ◽  
J. Princy Merlin ◽  
I. Jenisha Daisy Priscillal ◽  
I. Sharmila Lydia

The as-synthesized CuCo2O4/PANI nanocomposite has emerged as a new type of electrode material for energy storage applications due to its low cost and sustainable and high electrochemical performance.


Energies ◽  
2019 ◽  
Vol 12 (3) ◽  
pp. 376 ◽  
Author(s):  
Ivan Pavić ◽  
Zora Luburić ◽  
Hrvoje Pandžić ◽  
Tomislav Capuder ◽  
Ivan Andročec

Battery energy storage systems (BESS) and renewable energy sources are complementary technologies from the power system viewpoint, where renewable energy sources behave as flexibility sinks and create business opportunities for BESS as flexibility sources. Various stakeholders can use BESS to balance, stabilize and flatten demand/generation patterns. These applications depend on the stakeholder role, flexibility service needed from the battery, market opportunities and obstacles, as well as regulatory aspects encouraging or hindering integration of storage technologies. While developed countries are quickly removing barriers and increasing the integration share of BESS, this is seldom the case in developing countries. The paper identifies multiple case opportunities for different power system stakeholders in Croatia, models potential BESS applications using real-world case studies, analyzes feasibility of these investments, and discusses financial returns and barriers to overcome.


2014 ◽  
Vol 1070-1072 ◽  
pp. 418-421 ◽  
Author(s):  
Jun Chen ◽  
Chun Lin Guo

With the reserves of coal and other fossil energy decreasing, renewable energy sources (RES) will become the main power source of future power system. In order to ensure stable supply of RES generation and to improve efficiency of system, energy storage technology will play a more and more important role in power system. In this paper, we discussed the importance and characteristics of various energy storage technologies with battery and super capacitor energy storage technology as examples. Then we elaborated the principles and important effects of energy storage technologies in RES generation. Finally, using PSCAD to build the simulation model of grid connected RES generation and storage technology to obtain the effect of energy storage technologies. Results show that the energy storage devices can effectively alleviate the fluctuation of RES.


Author(s):  
Z. Islifo

The existing electric power grid is reliable enough to meet everyday needs of U.S. electricity users. However, the grid needs major infrastructure upgrades to meet the rising demands for a reliable, resilient, and secure electricity delivery. Drivers to modernize the grid include increased demand for clean sources of energy, growing number of renewable energy sources on the grid and customer participation in power generation. Smart grid technologies are critical for monitoring, managing and controlling the power grid. Energy storage introduces an important new dimension on the grid, the ability to store electricity at one time and release the stored electricity for use at another time. Flow batteries are one type of energy storage technologies that are well suited for large-scale utility application on the grid. Currently, vanadium redox ow batteries are the most common used utility-scaled ow batteries.


2020 ◽  
pp. 2050032
Author(s):  
PENGHUI CAO ◽  
YUHUA YAN ◽  
XINLI TIAN ◽  
RUIZHUO OUYANG ◽  
YUQING MIAO

Oxygen evolution reaction (OER) is of great importance in splitting water. However, the sluggish OER kinetics at the anode severely hinders the H2 evolution at the cathode which is a crucial procedure for energy storage. Herein, we report the synthesis of a new OER catalyst of Co(OH)x(WO[Formula: see text] via a one-step hydrothermal method, where the incorporation of WO[Formula: see text] as a condenser greatly enhanced the electrocatalytic activity of Co(OH)2 toward OER. Moreover, the introduction of mesoporous carbon (MC) further improves the electrocatalytic performance of Co(OH)x(WO[Formula: see text] by forming the nanocomposites of Co(OH)x(WO[Formula: see text]/MC. The synergism between Co(OH)2 and WO[Formula: see text] and the synergistic catalytic effect of Co(OH)x(WO[Formula: see text] and MC majorly contributed to the apparently enhanced electrocatalysis of Co(OH)x(WO[Formula: see text]/MC toward OER. This work provides an efficient strategy to improve the electrocatalytic activity of Co(OH)2 by introducing WO[Formula: see text] and forming nanocomposites between Co(OH)x(WO[Formula: see text] and MC for low-cost, convenient and highly efficient water oxidation.


2019 ◽  
Vol 6 (7) ◽  
pp. 190132 ◽  
Author(s):  
Mingxu Chu ◽  
Mingtang Li ◽  
Zhaolian Han ◽  
Jinshan Cao ◽  
Rui Li ◽  
...  

In this present work, smoke-like carbon was successfully fabricated from a bio-waste fungal substrate crude polysaccharide for the first time. The as-prepared products possess smoke-like structures, ultra-high specific surface area ( S BET : 2160 m 2 g −1 ) and a high content of micropores (microporous surface area of 60%, with a nanopore size of 0.70 nm), which can increase the specific capacitance, representing a wonderful structure for electrochemical energy storage devices. The as-prepared sample displayed an excellent specific capacitance of 152 F g −1 at 5 A g −1 in the three-electrode configuration and exhibited maximal densities of 6.8–10.2 W h kg −1 under power outputs of 253.4–24.3 kW kg −1 . We believe that this work demonstrates a simple, green and low-cost route by using agricultural residue to prepare applicable carbon materials for use in energy storage devices.


2020 ◽  
Vol 21 (9) ◽  
pp. 3113 ◽  
Author(s):  
Ryan Dula Corpuz ◽  
Lyn Marie De Juan-Corpuz ◽  
Mai Thanh Nguyen ◽  
Tetsu Yonezawa ◽  
Heng-Liang Wu ◽  
...  

Recently, rechargeable zinc-ion batteries (ZIBs) have gained a considerable amount of attention due to their high safety, low toxicity, abundance, and low cost. Traditionally, a composite manganese oxide (MnO2) and a conductive carbon having a polymeric binder are used as a positive electrode. In general, a binder is employed to bond all materials together and to prevent detachment and dissolution of the active materials. Herein, the synthesis of α-MnO2 nanowires on carbon cloth via a simple one-step hydrothermal process and its electrochemical performance, as a binder-free cathode in aqueous and nonaqueous-based ZIBs, is duly reported. Morphological and elemental analyses reveal a single crystal α-MnO2 having homogeneous nanowire morphology with preferential growth along {001}. It is significant that analysis of the electrochemical performance of the α-MnO2 nanowires demonstrates more stable capacity and superior cyclability in a dimethyl sulfoxide (DMSO) electrolyte ZIB than in an aqueous electrolyte system. This is because DMSO can prevent irreversible proton insertion as well as unfavorable dendritic zinc deposition. The application of the binder-free α-MnO2 nanowires cathode in DMSO can promote follow-up research on the high cyclability of ZIBs.


Energies ◽  
2019 ◽  
Vol 12 (16) ◽  
pp. 3138 ◽  
Author(s):  
Linda Barelli ◽  
Gianni Bidini ◽  
Paolo Cherubini ◽  
Andrea Micangeli ◽  
Dario Pelosi ◽  
...  

Hybrid microgrids, integrating renewable energy sources and energy storage, are key in extending energy access in the remote areas of developing countries, in a sustainably way and in providing a good quality of service. Their extensive development faces a financing gap, having a high capital expenditure (CAPEX) also due to high storage costs. In the present work, a case study of a Ugandan microgrid was used to compare various battery technologies employed on their own and in a combination with a flywheel, in terms of their durability and the overall levelized cost of energy (LCOE) of the plant. Simulations show how hybrid storage configurations result in a lower LCOE for the current load profile of the microgrid and even more so for two reference residential and industrial load scenarios, suggesting this would remain the best solution even accounting for future socio-economic development. The resulting LCOE for hybrid storage configurations is lower than the average values reported for microgrid projects and represents a promising solution to speed up the development of such electrification initiatives.


Sign in / Sign up

Export Citation Format

Share Document