Steering Strategy for a Multi-Axle Wheeled Vehicles

Author(s):  
Waqar Ahmed ◽  
Raja Amer Azim ◽  
Sana Fatima

This paper presents a mathematical model for multi-axle steering vehicles operating on level ground. For transporting heavy loads vehicles with multiple axles are required. Apart from added complexity steering of multiple axle for turning is a big challenge. Due to type of load being carried a single unit vehicle is sometimes preferred. The mathematical model of a six axle vehicle with 4-axle steering system is developed. Simulations at various track radii, vehicle speeds and steering ratios (ratio between the first, second, fifth and sixth steering axle) are performed. Axle steering angles and wheel slip angles are evaluated. The steering ratio requirements vary with vehicle speed and turn radius. A configuration is selected for better performance for a wider range. The resulting steering ratios show good vehicle maneuverability, stability and steering efficiency.

2021 ◽  
Vol 2107 (1) ◽  
pp. 012046
Author(s):  
I Y Amran ◽  
K Isa

Abstract The dynamic model and motion simulation for a Triangular-Shaped Autonomous Underwater Vehicle (TAUV) with independently controlled rudders are described in this paper. The TAUV is designed for biofouling cleaning in aquaculture cage fishnet. It is buoyant underwater and moves by controlling two thrusters. Hence, in this research work, the authors designed a TAUV that is propelled by two thrusters and maneuvered by using an independently controllable rudder. This paper discussed the development of a mathematical model for the TAUV and its dynamic characteristics. The mathematical model was simulated by using Matlab and Simulink to analyze the TAUV’s motion based on open-loop control of different rudder angles. The position, linear and angular velocities, angle of attack, and underwater vehicle speed are all demonstrated in the findings.


2017 ◽  
Vol 2017 ◽  
pp. 1-14
Author(s):  
M. Selçuk Arslan

A mathematical model of steering feel based on a hysteresis model is proposed for Steer-by-Wire systems. The normalized Bouc-Wen hysteresis model is used to describe the steering wheel torque feedback to the driver. By modifying the mathematical model of the hysteresis model for a steering system and adding custom parameters, the availability of adjusting the shape of steering feel model for various physical and dynamic conditions increases. Addition of a term about the tire dynamics to the steering feel model renders the steering wheel torque feedback more informative about the tire road interaction. Some simulation results are presented to establish the feasibility of the proposed model. The results of hardware-in-the-loop simulations show that the model provides a realistic and informative steering feel.


2017 ◽  
Vol 67 (2) ◽  
pp. 51-60
Author(s):  
Gezim Hoxha ◽  
Ahmet Shala ◽  
Rame Likaj

AbstractThe paper addresses the problem to vehicle speed calculation at road accidents. To determine the speed are used the PC Crash software and Virtual Crash. With both methods are analysed concrete cases of road accidents. Calculation methods and comparing results are present for analyse. These methods consider several factors such are: the front part of the vehicle, the technical feature of the vehicle, car angle, remote relocation after the crash, road conditions etc. Expected results with PC Crash software and Virtual Crash are shown in tabular graphics and compared in mathematical methods.


Author(s):  
Fangyan Zheng ◽  
Xinghui Han ◽  
Xu Man ◽  
Lin Hua

Variable speed steering system has been used by cars of various brands, including BMW and Toyota, with the purpose of improving the stationarity and controllability of the vehicle. Until now, relevant investigations are focused on the theory and traditional application, while the geometric characteristics and tooth modification for the rack are left untouched upon, hindering the prospect of a wider application. Focusing on this, the paper synthesizes the mathematical model, geometry characteristics, and tooth modification method for the variable pinion–rack drive. The major contributions lie in the contact analysis and the modification methodology for the pinion–rack drive, which combined forms a solid foundation for the application that has never been discussed.


Author(s):  
Oleksandr Osetrov ◽  
Bohdan Chuchumenko

Goal. The purpose of the work is mathematical modeling of Daewoo Lanos passenger car acceleration dynamics. Methodology. The mathematical model is based on the methodology of E.A. Chudakov and N.A.Yakovlev. According to this method, the main factor that determines the current value of vehicle acceleration at an elementary speed section is the dynamic factor. This factor depends on the traction force, the air resistance force and the weight of the vehicle. The paper proposes formulas for determining the dynamic factor and parameters of vehicle acceleration at an elementary speed section, where gear shift takes place. The model is implemented in the MATLAB software environment. The software product allows to determine the parameters of the car during acceleration to the maximum speed when the engine is running at the external speed characteristic modes. Results Based on the results of mathematical modeling for the Daewoo Lanos car, the loads arising in the drive of the car were analyzed. It is shown that the tractive effort is mainly spent on overcoming the inertial forces, which at the beginning of the movement exceed the resistance forces of the road and air by more than 50 times. With an increase in the vehicle speed, the inertia force decreases and at a speed of 100 km / h it is only twice the other load components. It is shown that with the accepted initial data, the Daewoo Lanos car accelerates to 100 km/h in 17.7 s, which corresponds to the experimental data. The influence of the mass of the car, the rated power of the engine, the mode and time of gear shifting, the radius of the wheels, the height of the car, the coefficient of aerodynamic drag on the dynamics of acceleration of the car is analyzed. It was revealed that the vehicle weight and the nominal power of the engine affect the dynamics of acceleration from 0 to 100 km/h to the greatest extent. The influence of other parameters in the indicated speed range is not somewhat significant. The explanation of the obtained results is given. Practical value. The mathematical model presented in the work allows to determine the parameters of the engine and the car during acceleration, take into account the influence of the design and adjusting parameters of the engine and the car on these indicators, and carry out optimization studies.


Author(s):  
Olexandr Pavlenko ◽  
Serhii Dun ◽  
Maksym Skliar

In any economy there is a need for the bulky goods transportation which cannot be divided into smaller parts. Such cargoes include building structures, elements of industrial equipment, tracked or wheeled construction and agricultural machinery, heavy armored military vehicles. In any case, tractor-semitrailer should provide fast delivery of goods with minimal fuel consumption. In order to guarantee the goods delivery, tractor-semitrailers must be able to overcome the existing roads broken grade and be capable to tow a semi-trailer in off-road conditions. These properties are especially important for military equipment transportation. The important factor that determines a tractor-semitrailer mobility is its gradeability. The purpose of this work is to improve a tractor-semitrailer mobility with tractor units manufactured at PJSC “AutoKrAZ” by increasing the tractor-semitrailer gradeability. The customer requirements for a new tractor are determined by the maximizing the grade to 18°. The analysis of the characteristics of modern tractor-semitrailers for heavy haulage has shown that the highest rate of this grade is 16.7°. The factors determining the limiting gradeability value were analyzed, based on the tractor-semitrailer with a KrAZ-6510TE tractor and a semi-trailer with a full weight of 80 t. It has been developed a mathematical model to investigate the tractor and semi-trailer axles vertical reactions distribution on the tractor-semitrailer friction performances. The mathematical model has allowed to calculate the gradeability value that the tractor-semitrailer can overcome in case of wheels and road surface friction value and the tractive force magnitude from the engine. The mathematical model adequacy was confirmed by comparing the calculations results with the data of factory tests. The analysis showed that on a dry road the KrAZ-6510TE tractor with a 80 t gross weight semitrailer is capable to climb a gradient of 14,35 ° with its coupling mass full use condition. The engine's maximum torque allows the tractor-semitrailer to overcome a gradient of 10.45° It has been determined the ways to improve the design of the KrAZ-6510TE tractor to increase its gradeability. Keywords: tractor, tractor-semitrailer vehicle mobility, tractor-semitrailer vehicle gradeability.


Author(s):  
Oleksii Timkov ◽  
Dmytro Yashchenko ◽  
Volodymyr Bosenko

The article deals with the development of a physical model of a car equipped with measuring, recording and remote control equipment for experimental study of car properties. A detailed description of the design of the physical model and of the electronic modules used is given, links to application libraries and the code of the first part of the program for remote control of the model are given. Atmega microcontroller on the Arduino Uno platform was used to manage the model and register the parameters. When moving the car on the memory card saved such parameters as speed, voltage on the motor, current on the motor, the angle of the steered wheel, acceleration along three coordinate axes are recorded. Use of more powerful microcontrollers will allow to expand the list of the registered parameters of movement of the car. It is possible to measure the forces acting on the elements of the car and other parameters. In the future, it is planned to develop a mathematical model of motion of the car and check its adequacy in conducting experimental studies on maneuverability on the physical model. In addition, it is possible to conduct studies of stability and consumption of electrical energy. The physical model allows to quickly change geometric dimensions and mass parameters. In the study of highway trains, this approach will allow to investigate the various layout schemes of highway trains in the short term. It is possible to make two-axle road trains and saddle towed trains, three-way hitched trains of different layout. The results obtained will allow us to improve not only the mathematical model, but also the experimental physical model, and move on to further study the properties of hybrid road trains with an active trailer link. This approach allows to reduce material and time costs when researching the properties of cars and road trains. Keywords: car, physical model, experiment, road trains, sensor, remote control, maneuverability, stability.


Author(s):  
Serhii Kovbasenko ◽  
Andriy Holyk ◽  
Serhii Hutarevych

The features of an advanced mathematical model of motion of a truck with a diesel engine operating on the diesel and diesel gas cycles are presented in the article. As a result of calculations using the mathematical model, a decrease in total mass emissions as a result of carbon monoxide emissions is observed due to a decrease in emissions of nitrogen oxides and emissions of soot in the diesel gas cycle compared to the diesel cycle. The mathematical model of a motion of a truck on a city driving cycle according to GOST 20306-90 allows to study the fuel-economic, environmental and energy indicators of a diesel and diesel gas vehicle. The results of the calculations on the mathematical model will make it possible to conclude on the feasibility of converting diesel vehicles to using compressed natural gas. Object of the study – the fuel-economic, environmental and energy performance diesel engine that runs on dual fuel system using CNG. Purpose of the study – study of changes in fuel, economic, environmental and energy performance of vehicles with diesel engines operating on diesel and diesel gas cycles, according to urban driving cycle modes. Method of the study – calculations on a mathematical model and comparison of results with road tests. Bench and road tests, results of calculations on the mathematical model of motion of a truck with diesel, working on diesel and diesel gas cycles, show the improvement of environmental performance of diesel vehicles during the converting to compressed natural gas in operation. Improvement of environmental performance is obtained mainly through the reduction of soot emissions and nitrogen oxides emissions from diesel gas cycle operations compared to diesel cycle operations. The results of the article can be used to further develop dual fuel system using CNG. Keywords: diesel engine, diesel gas engine, CNG


1998 ◽  
Vol 2 ◽  
pp. 23-30
Author(s):  
Igor Basov ◽  
Donatas Švitra

Here a system of two non-linear difference-differential equations, which is mathematical model of self-regulation of the sugar level in blood, is investigated. The analysis carried out by qualitative and numerical methods allows us to conclude that the mathematical model explains the functioning of the physiological system "insulin-blood sugar" in both normal and pathological cases, i.e. diabetes mellitus and hyperinsulinism.


2001 ◽  
Vol 6 (1) ◽  
pp. 9-19 ◽  
Author(s):  
A. Buikis ◽  
J. Cepitis ◽  
H. Kalis ◽  
A. Reinfelds ◽  
A. Ancitis ◽  
...  

The mathematical model of wood drying based on detailed transport phenomena considering both heat and moisture transfer have been offered in article. The adjustment of this model to the drying process of papermaking is carried out for the range of moisture content corresponding to the period of drying in which vapour movement and bound water diffusion in the web are possible. By averaging as the desired models are obtained sequence of the initial value problems for systems of two nonlinear first order ordinary differential equations. 


Sign in / Sign up

Export Citation Format

Share Document