Experimental Investigation on Newtonian Drop Formation in Different Continuous Phase Fluids

Author(s):  
Ashkan Nazari ◽  
Arash Nazari

In this work, formation water drops as a Newtonian fluid in different bulk fluids are investigated. A MATLAB code has been developed to process the images taken via a high speed camera in the lab to measure the contact angle of drop, as well as the drop’s diameter and volume at different stages of formation. It is found that the water drop shows similar behavior when they shaped in the liquid phase bulk fluid with different properties while the drop formation’s behavior is substantially different when water drops are formed in the gas bulk fluid. In addition, it is tried to predict the frequency of drop formation at different flow rates with regard to the inertial and surface tension forces applied to the dispread fluid.

2011 ◽  
Vol 354-355 ◽  
pp. 609-614
Author(s):  
Jing Yin Li ◽  
Xiao Fang Yuan ◽  
Qiang Han

Experimental studies of a water drop impinging on a rotating disk using a high-speed video camera have been performed. The photos of the impact were analyzed in detail. Three kinds of the deposition patterns were observed with the variation in Rossby number. It is found that Rossby number plays an important role in the deposition process of the drop impacting on the rotating disk, leading to some new stages not observed for drop impact on a stationary plate.


1988 ◽  
Vol 2 (1) ◽  
pp. 82-87 ◽  
Author(s):  
Donald L. Reichard

The effect of variables that influence the retention of spray droplets impacting on leaf surfaces was studied, using a uniform-size droplet generator to produce drops ranging from 63 to 545 μm diam. To observe the impaction of spray droplets more easily and to measure their velocity before and after impaction, high-speed motion photography (6000 frames/sec) was used. Rebound of spray droplets depends on the micro-structure of the target surface. Leaf surfaces of several crops and weeds reflected 63 to 545 μm diam water drops traveling at velocities less than velocities of drops delivered by popular nozzles at commonly used spray pressures. If the concentration is high enough, some surfactants can reduce the rebound of drops. With one surfactant, its concentration had to be much greater than the critical micelle concentration to reduce reflection of spray drops.


Fluids ◽  
2019 ◽  
Vol 4 (3) ◽  
pp. 162 ◽  
Author(s):  
Thorben Helmers ◽  
Philip Kemper ◽  
Jorg Thöming ◽  
Ulrich Mießner

Microscopic multiphase flows have gained broad interest due to their capability to transfer processes into new operational windows and achieving significant process intensification. However, the hydrodynamic behavior of Taylor droplets is not yet entirely understood. In this work, we introduce a model to determine the excess velocity of Taylor droplets in square microchannels. This velocity difference between the droplet and the total superficial velocity of the flow has a direct influence on the droplet residence time and is linked to the pressure drop. Since the droplet does not occupy the entire channel cross-section, it enables the continuous phase to bypass the droplet through the corners. A consideration of the continuity equation generally relates the excess velocity to the mean flow velocity. We base the quantification of the bypass flow on a correlation for the droplet cap deformation from its static shape. The cap deformation reveals the forces of the flowing liquids exerted onto the interface and allows estimating the local driving pressure gradient for the bypass flow. The characterizing parameters are identified as the bypass length, the wall film thickness, the viscosity ratio between both phases and the C a number. The proposed model is adapted with a stochastic, metaheuristic optimization approach based on genetic algorithms. In addition, our model was successfully verified with high-speed camera measurements and published empirical data.


2001 ◽  
Vol 427 ◽  
pp. 73-105 ◽  
Author(s):  
LIOW JONG LENG

The impact of a spherical water drop onto a water surface has been studied experimentally with the aid of a 35 mm drum camera giving high-resolution images that provided qualitative and quantitative data on the phenomena. Scaling laws for the time to reach maximum cavity sizes have been derived and provide a good fit to the experimental results. Transitions between the regimes for coalescence-only, the formation of a high-speed jet and bubble entrapment have been delineated. The high-speed jet was found to occur without bubble entrapment. This was caused by the rapid retraction of the trough formed by a capillary wave converging to the centre of the cavity base. The converging capillary wave has a profile similar to a Crapper wave. A plot showing the different regimes of cavity and impact drop behaviour in the Weber–Froude number-plane has been constructed for Fr and We less than 1000.


1960 ◽  
Vol 9 (2) ◽  
pp. 175-182 ◽  
Author(s):  
K. N. Dodd

A Theory is developed, based on the very limited available experimental evidence, to predict the distortion and disintegration of a water drop when it is exposed to a stream of air with continuously increasing relative velocity. The theory is applied to water drops situated in the path of a solid sphere moving through the air.


2014 ◽  
Vol 962-965 ◽  
pp. 415-418
Author(s):  
Zong Gang Wang ◽  
Zhen Wei

The gas drilling mainly relies on the high speed air flow to carry the cuttings. The formation water or oil mixed with the cuttings and then they stick together in clumps after the formation water or oil went into the hole annulus, the clumps stick on the drill string and the borehole. The clumps may block the hole annulus and cause the stick or bury the drill string and many other complex accident. It could stop the cuttings from sticking with the liquid through freezing the formation fluid with the liquid nitrogen. And the natural geotechnical becomes into the frozen soil, and forms the temporary solid which is intact, high strength and low-permeability. This paper utilize the ANSYS finite element program to simulate the 3D model of borehole and hole wall to calculate the freezing radius of the steady state, heat loss, temperature of the freezing point and the conductive heat time of the unsteady state. And this study has provided the basis of the freezing technology for borehole stability of gas drilling.


Author(s):  
B. R. Nichols ◽  
R. L. Fittro ◽  
C. P. Goyne

Many high-speed, rotating machines across a wide range of industrial applications depend on fluid film bearings to provide both static support of the rotor and to introduce stabilizing damping forces into the system through a developed hydrodynamic film wedge. Reduced oil supply flow rate to the bearings can cause cavitation, or a lack of a fully developed film layer, at the leading edge of the bearing pads. Reducing oil flow has the well-documented effects of higher bearing operating temperatures and decreased power losses due to shear forces. While machine efficiency may be improved with reduced lubricant flow, little experimental data on its effects on system stability and performance can be found in the literature. This study looks at overall system performance of a test rig operating under reduced oil supply flow rates by observing steady-state bearing performance indicators and baseline vibrational response of the shaft. The test rig used in this study was designed to be dynamically similar to a high-speed industrial compressor. It consists of a 1.55 m long, flexible rotor supported by two tilting pad bearings with a nominal diameter of 70 mm and a span of 1.2 m. The first bending mode is located at approximately 5,000 rpm. The tiling-pad bearings consist of five pads in a vintage, flooded bearing housing with a length to diameter ratio of 0.75, preload of 0.3, and a load-between-pad configuration. Tests were conducted over a number of operating speeds, ranging from 8,000 to 12,000 rpm, and bearing loads, while systematically reducing the oil supply flow rates provided to the bearings under each condition. For nearly all operating conditions, a low amplitude, broadband subsynchronous vibration pattern was observed in the frequency domain from approximately 0–75 Hz. When the test rig was operated at running speeds above its first bending mode, a distinctive subsynchronous peak emerged from the broadband pattern at approximately half of the running speed and at the first bending mode of the shaft. This vibration signature is often considered a classic sign of rotordynamic instability attributed to oil whip and shaft whirl phenomena. For low and moderate load conditions, the amplitude of this 0.5x subsynchronous peak increased with decreasing oil supply flow rate at all operating speeds. Under the high load condition, the subsynchronous peak was largely attenuated. A discussion on the possible sources of this subsynchronous vibration including self-excited instability and pad flutter forced vibration is provided with supporting evidence from thermoelastohydrodynamic (TEHD) bearing modeling results. Implications of reduced oil supply flow rate on system stability and operational limits are also discussed.


2013 ◽  
Vol 871 ◽  
pp. 363-368
Author(s):  
Hong Tao Zeng ◽  
Lin Lin Lin ◽  
Cong Feng ◽  
Zhi Huai Xiao

In order to measure the electric insulation performance of the electrical equipment in rainy weather, its essential to design a rain device to simulate different conditions of rainfall. In this paper, a motion model of raindrop sprayed by the rain device and differential equations describing its motion characteristics are built. Basing on the analysis of water drop motion, a set of simulation software is developed for the selection of rain test device and the analysis of test results. The software can simulate the water drops motion process from nozzle to test equipment, and the simulation results is almost the same with field test, so the simulation software provides the basis for the design of rain test device.


Author(s):  
Guohai Jia ◽  
Guoshuai Tian ◽  
Zicheng Gao ◽  
Dan Huang ◽  
Wei Li ◽  
...  

Abstract Cyclone venturi dryer is suitable for drying materials with large particle size and wide distribution. The working process of cyclone venturi dryer is a very complicated three-dimensional and turbulent motion, so it is difficult to be studied theoretically and experimentally. In order to study the internal flow characteristics of the biomass particle cyclone venturi dryer, the computational fluid dynamics (CFD) software was used to simulate the gas-solid two-phase flow field inside the cyclone venturi dryer. The continuous phase adopts the Realizable k-ε turbulence model and the particle phase is discrete. The effects of different injection volume on the pressure, velocity, and temperature fields inside a cyclone venturi dryer were analyzed. The results showed that the maximum pressure drop and velocity change inside the dryer were at the venturi pipe. The wet material of the cyclone venturi dryer was inhaled into the venturi contraction tube by the negative pressure formed after the highspeed airflow was ejected, thus the mixture was completed in the venturi throat. The wood debris material was mixed with the high-speed hot gas flow in the venturi throat and then sprayed into the diffusion pipe. In the diffusion pipe of venturi, the heat and mass transfer process of wet wood debris and heat flow in venturi diffusion tube was completed. It is in good agreement with the simulation results. This study can provide a reference for the optimization design of the related cyclone venturi dryer structure.


1993 ◽  
Vol 252 ◽  
pp. 499-523 ◽  
Author(s):  
İ. Bedii Özdemir ◽  
J. H. Whitelaw

This paper is concerned with an experimental investigation of the oblique impingement of an unsteady, axisymmetric two-phase jet on heated surfaces. Size and velocity were measured simultaneously with a phase-Doppler velocimeter, and the spatial distributions over the wall jet were found to be correlated with the interfacial activities as inferred from vertical velocity measurements in the vicinity of the wall. These results are discussed together with size measurements by a laser-diffraction technique to quantify the effect of the approach conditions of the inflowing jet droplet field and wall temperature in relation to mechanisms of secondary atomization.Two mechanisms of secondary atomization were identified; the first did not involve direct wall contact and was due to the strain acting on the droplets by the continuous phase within the impingement region and was enhanced by thermal effects from the wall to cause breakup. The approaching velocity of the inflowing droplets to the plate was important to this process so that higher velocities increased the rate of strain within the impingement region and, consequently, the wall temperature promoting the secondary atomization shifted towards lower values. The second mechanism required direct wall contact and involved atomization of the film deposited on the wall by the impingement of the inflowing two-phase jet. With the penetration of high-speed inflowing droplets into the film, liquid mass was raised into the two-phase medium due to splashes from the film so that a new size class with larger droplets was generated. The resulting large droplets tended to stay close to the wall within the impingement region with small vertical velocitiesIn between the injections, the suspended droplet field above the film oscillated normal to the plate as a cloud so that the impact of large droplets on the film resulted in coalescence with the film and the ejection of smaller numbers of small droplets. The unsteady wall jet flow, caused by the arrival of the spray at the plate, swept the vertically oscillating droplet cloud radially outwards so that the resulting radial transport caused the dynamics of the unsteady film to be correlated with the size characteristics of the unsteady wall jet. Based on this phenomenological description, a radial droplet transport equation is derived.The correlation suggests that the secondary atomization with direct wall contact is the dominant process for the generation of a new size class within the wall flow and initiates the mutual interaction between the unsteady film and wall jet droplet field.


Sign in / Sign up

Export Citation Format

Share Document