Prediction of Gas Permeation in Polymeric Materials Used in Oil and Gas Industry

Author(s):  
Nooshin Nassr ◽  
Zahed Siddique

An Arrhenius relationship is employed to develop a model for prediction of gas permeation in the polymeric materials. A permeation cell was designed to measure the gas permeation. The permeation of Helium was examined over a range of low to high temperature and pressure conditions. The results of the experiments were used to verify the accuracy of the prediction model. The obtained model was successful in predicting gas permeation rate at two different pressures. The results showed that pressure’s effect is insignificant on models. The predicted results for different pressure were close, and both models can be used to obtain an approximation for gas permeation rate for the examined material where no experimental data exists.

Algorithms ◽  
2019 ◽  
Vol 12 (6) ◽  
pp. 119 ◽  
Author(s):  
Hamidreza Hasheminasab ◽  
Sarfaraz Hashemkhani Zolfani ◽  
Mahdi Bitarafan ◽  
Prasenjit Chatterjee ◽  
Alireza Abhaji Ezabadi

Blast-resistant buildings are mainly used to protect main instruments, controllers, expensive equipment, and people from explosion waves. Oil and gas industry projects almost always include blast-resistant buildings. For instance, based on a hazard identification (HAZID) and hazard and operability (HAZOP) analysis of a plant, control rooms and substations are sometimes designed to withstand an external free air explosion that generates blast over pressure. In this regard, a building façade is considered to be the first barrier of resistance against explosion waves, and therefore a building façade has an important role in reducing a building’s vulnerability and human casualties. In case of a lack of enough resistance, explosion waves enter a building and bring about irreparable damage to the building. Consequently, it seems important to study and evaluate various materials used in a façade against the consequences of an explosion. This study tried to make a comparison between different types of building facades against explosion waves. The materials used in a building play a key role in the vulnerability of a building. In this research, a literature review and the fuzzy Delphi method were applied to find the most critical criteria, and then a fuzzy evaluation based on the distance from the average solution (EDAS) was applied in order to assess various materials used in building facades from the perspective of resiliency. A questionnaire was presented to measure effective indices in order to receive experts’ ideas. Finally, by implementing this methodology in a case study, it was concluded that a stone façade performs much better against explosions.


Metals ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 117
Author(s):  
Christopher Tom Engler ◽  
Helmuth Sarmiento Klapper ◽  
Matthias Oechsner

Due to the challenging operational conditions occurring during drilling, e.g., in the oil and gas industry, the corrosion fatigue (CF) behavior of materials used in drillstring components needs to be well understood. The combination of cyclic mechanic loads and a corrosive environment can affect significantly the integrity of a material, which has to be taken into account when selecting and qualifying materials for drilling equipment. Nickel alloys such as the precipitation-hardenable alloy 718 (UNS N07718) are widely used in many industrial applications including subterranean drilling. In the present study, the fatigue and CF behavior of alloy 718 in three different metallurgical conditions was investigated. The CF behavior of the different conditions was determined using customized rotating bending machines enabling testing in a simulated drilling environment at 125 °C. Results have shown that the fatigue and CF strength of alloy 718 is affected by its microstructural particularities, for instance, the amount of strengthening phases and δ-phase.


Author(s):  
S. V. Khonsari ◽  
G. L. England ◽  
A. R. Jamshidi-Vismeh ◽  
N. Fattahian

A new innovative ‘universal’ structural joint with multiple applications was devised. The two major conceived contexts for the use of this joint are ‘joining beams to columns,’ and ‘joining diagonal braces to horizontal ones.’ The main features of this joint are its high rotational capacity, its high shear deformation capacity, its high energy-dissipation capacity, its ability to contain damage, and its repalceability. Due to its geometry, it can well lend itself to protection measures against fire, normally practiced by the involving industries. This makes it a good candidate for being used in structures related to oil and gas industry, offshore or onshore. Through numerical modelling of the joint, also using mechanical properties of ‘mild steel,’ one of the best potential materials for the fabrication of the joint, at elevated temperatures, the ‘bending behaviour’ of the joint at various temperatures was studied. Additionally, the effects of using various thermal insulating materials, used for covering the joint, in reducing the temperature of various parts of the joint were investigated. Though not supported by any experiments, all these numerical analyses showed the potential of this joint for presenting improved behaviour during a fire scenario, as a result of using some insulating agents.


2016 ◽  
Vol 16 (2) ◽  
pp. 57-67
Author(s):  
M. Kmieć ◽  
B. Karpiński ◽  
M. Szkodo

Abstract The P110 steel specimens were subjected to ultrasonic cavitation erosion in different compositions of drilling muds and surfactant additive. The test procedure was based on ASTM-G-32 standard recommendations. API 5CT-P110 steel is used for pipes in oil and gas industry. The harsh environment and high velocity of flows poses corrosive and erosive threat on materials used there. The composition of drilling fluid influences its rheological properties and thus intensity of cavitation erosion. The erosion curves based on weight loss were measured.


2014 ◽  
Vol 625 ◽  
pp. 788-791 ◽  
Author(s):  
Alina M. Faizal ◽  
Shamsul Rahman Mohamed Kutty ◽  
Ezerie Henry Ezechi

- This study investigated the possible use of Microwave Incinerated Rice Husk Ash (MIRHA) as adsorbent for the treatment of wastewater generated from oil and gas industry using the column adsorption method. Adams-Bohart and Yoon-Nelson models were used to analyze experimental data. MIRHA was found to be porous, have high surface area and consist of 87-97% silica. Results show that both Adams-Bohart and Yoon-Nelson models can be used to describe experimental data.


2020 ◽  
Vol 13 (1) ◽  
pp. 66-73
Author(s):  
А.С. Усейнов ◽  
А.А. Русаков ◽  
В.И. Яковлев ◽  
Е.В. Гладких

A modification of the "NanoScan-4 D" nanohardness meter, which allows of measuring the mechanical properties of articles by the instrumental indentation according to GOST R8.748-2011 under conditions close to industrial fabrication, has been developed. The main advantage of the described device, unlike most modern portable hardness testers, is the ability to work with a wide class of materials (from metals to solid polymers) since the study of the mechanical properties of products does not require preliminary information on the elastic modulus of the material being tested. Presented are the experimental data obtained on standard samples of the enterprise: polycarbonate and aluminum, as well as on various metal articles used as parts of machines and mechanisms of the oil and gas industry. The measured values of hardness coincide with the values obtained on a laboratory nanohardness meter taking into account the inherent errors of this type of equipment.


2017 ◽  
Vol 864 ◽  
pp. 65-70 ◽  
Author(s):  
Syahrir Ridha ◽  
Muhammad Fareez Jamali ◽  
Riau Andriana Setiawan

This paper investigates the composition of geopolymer cement for thickening time under elevated temperature and pressure. Geopolymer based-cement becoming popular in construction industries because of its improved properties either chemically and physically as compared to Ordinary Portland Cement (OPC). At the same time, replacement of OPC with geopolymer cement able to eliminate CO2 emission due to calcination burning process. However, applications of geopolymer cement to oil and gas industry for cementing job are not well recorded. Fly ash based geopolymer cement with different percentages of slag from 0% to 10% were mixed using sodium hydroxide and sodium silicate as alkali activators. Density, fluid loss and compressive strengths were determined. The sample were cured at 3,000 psi and 65°C for 24 hours. Results show that the addition of slag reduces the thickening time from 30 minutes to just only 18 minutes with almost 40% reduction in time. In terms of density and compressive strength, an increment of slag is directly proportional as the value increased from 14.3 ppg to 15.0 ppg for density and 1,120 psi to 2,155 psi for compressive strength. For fluid loss test, increment of slag results in decrement of fluid loss from 0.64 ml to just only 0.38 ml.


Author(s):  
Eugene B. Caldona ◽  
John Ryan C. Dizon ◽  
Robert Andrew Viers ◽  
Vincent Joseph Garcia ◽  
Zane J. Smith ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document