scholarly journals The Role of Façade Materials in Blast-Resistant Buildings: An Evaluation Based on Fuzzy Delphi and Fuzzy EDAS

Algorithms ◽  
2019 ◽  
Vol 12 (6) ◽  
pp. 119 ◽  
Author(s):  
Hamidreza Hasheminasab ◽  
Sarfaraz Hashemkhani Zolfani ◽  
Mahdi Bitarafan ◽  
Prasenjit Chatterjee ◽  
Alireza Abhaji Ezabadi

Blast-resistant buildings are mainly used to protect main instruments, controllers, expensive equipment, and people from explosion waves. Oil and gas industry projects almost always include blast-resistant buildings. For instance, based on a hazard identification (HAZID) and hazard and operability (HAZOP) analysis of a plant, control rooms and substations are sometimes designed to withstand an external free air explosion that generates blast over pressure. In this regard, a building façade is considered to be the first barrier of resistance against explosion waves, and therefore a building façade has an important role in reducing a building’s vulnerability and human casualties. In case of a lack of enough resistance, explosion waves enter a building and bring about irreparable damage to the building. Consequently, it seems important to study and evaluate various materials used in a façade against the consequences of an explosion. This study tried to make a comparison between different types of building facades against explosion waves. The materials used in a building play a key role in the vulnerability of a building. In this research, a literature review and the fuzzy Delphi method were applied to find the most critical criteria, and then a fuzzy evaluation based on the distance from the average solution (EDAS) was applied in order to assess various materials used in building facades from the perspective of resiliency. A questionnaire was presented to measure effective indices in order to receive experts’ ideas. Finally, by implementing this methodology in a case study, it was concluded that a stone façade performs much better against explosions.

Metals ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 117
Author(s):  
Christopher Tom Engler ◽  
Helmuth Sarmiento Klapper ◽  
Matthias Oechsner

Due to the challenging operational conditions occurring during drilling, e.g., in the oil and gas industry, the corrosion fatigue (CF) behavior of materials used in drillstring components needs to be well understood. The combination of cyclic mechanic loads and a corrosive environment can affect significantly the integrity of a material, which has to be taken into account when selecting and qualifying materials for drilling equipment. Nickel alloys such as the precipitation-hardenable alloy 718 (UNS N07718) are widely used in many industrial applications including subterranean drilling. In the present study, the fatigue and CF behavior of alloy 718 in three different metallurgical conditions was investigated. The CF behavior of the different conditions was determined using customized rotating bending machines enabling testing in a simulated drilling environment at 125 °C. Results have shown that the fatigue and CF strength of alloy 718 is affected by its microstructural particularities, for instance, the amount of strengthening phases and δ-phase.


Author(s):  
S. V. Khonsari ◽  
G. L. England ◽  
A. R. Jamshidi-Vismeh ◽  
N. Fattahian

A new innovative ‘universal’ structural joint with multiple applications was devised. The two major conceived contexts for the use of this joint are ‘joining beams to columns,’ and ‘joining diagonal braces to horizontal ones.’ The main features of this joint are its high rotational capacity, its high shear deformation capacity, its high energy-dissipation capacity, its ability to contain damage, and its repalceability. Due to its geometry, it can well lend itself to protection measures against fire, normally practiced by the involving industries. This makes it a good candidate for being used in structures related to oil and gas industry, offshore or onshore. Through numerical modelling of the joint, also using mechanical properties of ‘mild steel,’ one of the best potential materials for the fabrication of the joint, at elevated temperatures, the ‘bending behaviour’ of the joint at various temperatures was studied. Additionally, the effects of using various thermal insulating materials, used for covering the joint, in reducing the temperature of various parts of the joint were investigated. Though not supported by any experiments, all these numerical analyses showed the potential of this joint for presenting improved behaviour during a fire scenario, as a result of using some insulating agents.


2016 ◽  
Vol 16 (2) ◽  
pp. 57-67
Author(s):  
M. Kmieć ◽  
B. Karpiński ◽  
M. Szkodo

Abstract The P110 steel specimens were subjected to ultrasonic cavitation erosion in different compositions of drilling muds and surfactant additive. The test procedure was based on ASTM-G-32 standard recommendations. API 5CT-P110 steel is used for pipes in oil and gas industry. The harsh environment and high velocity of flows poses corrosive and erosive threat on materials used there. The composition of drilling fluid influences its rheological properties and thus intensity of cavitation erosion. The erosion curves based on weight loss were measured.


Author(s):  
Nooshin Nassr ◽  
Zahed Siddique

An Arrhenius relationship is employed to develop a model for prediction of gas permeation in the polymeric materials. A permeation cell was designed to measure the gas permeation. The permeation of Helium was examined over a range of low to high temperature and pressure conditions. The results of the experiments were used to verify the accuracy of the prediction model. The obtained model was successful in predicting gas permeation rate at two different pressures. The results showed that pressure’s effect is insignificant on models. The predicted results for different pressure were close, and both models can be used to obtain an approximation for gas permeation rate for the examined material where no experimental data exists.


Author(s):  
Sulardi Sulardi ◽  
Nuruddin Kafy El-Ridho

The purpose of this study is to provide an overview of potential hazards and safe work procedures in the confined space area of ??the working of the oil and gas industry. The research method used was the application research method with a case study approach in the oil and gas industry in Balikpapan. The results showed that the potential danger in the room was limited by the danger of lack of oxygen, fire, poisoning explosion, irritation, static electricity, mechanical energy, extreme room temperature, dehydration, insufficient air circulation, slippery surfaces and ergonomic hazards. Safe working procedures in confined spaces were ensuring a safe working environment, use of PPE and work safety equipment, isolation of mechanical equipment, cleaning of gases and liquids, adequate air ventilation and adequate communication systems. The results of the study also recommended supporting the success of work in the confined space area to always be aware of the possibility of toxic gas, low oxygen concentrations and excess, the danger of work equipment and workers equipped with a gas tester.


2020 ◽  
Vol 78 (7) ◽  
pp. 861-868
Author(s):  
Casper Wassink ◽  
Marc Grenier ◽  
Oliver Roy ◽  
Neil Pearson

2004 ◽  
pp. 51-69 ◽  
Author(s):  
E. Sharipova ◽  
I. Tcherkashin

Federal tax revenues from the main sectors of the Russian economy after the 1998 crisis are examined in the article. Authors present the structure of revenues from these sectors by main taxes for 1999-2003 and prospects for 2004. Emphasis is given to an increasing dependence of budget on revenues from oil and gas industries. The share of proceeds from these sectors has reached 1/3 of total federal revenues. To explain this fact world oil prices dynamics and changes in tax legislation in Russia are considered. Empirical results show strong dependence of budget revenues on oil prices. The analysis of changes in tax legislation in oil and gas industry shows that the government has managed to redistribute resource rent in favor of the state.


Sign in / Sign up

Export Citation Format

Share Document