Investigating the Effect of Tool Coating on Cutting Forces and Tool Wear During Micro-Milling of Polycarbonate Glass

Author(s):  
Craig Hanson ◽  
Xingbang Chen ◽  
Muhammad P. Jahan ◽  
Jianfeng Ma ◽  
Gregory K. Arbuckle

Polycarbonate glass is one of the most widely used materials in the optical industries for making impact resistance lenses. Besides optical applications, polycarbonate glass has found applications in automotive and biomedical industries. The objective of this study is to investigate the effect of tool coating on the reduction of tool wear and cutting forces during micro-milling of polycarbonate glass. Both numerical modeling and experimental investigation have been carried out to investigate the effectiveness of various tool coatings on the carbide tool in minimizing the cutting forces, and hence tool wear. A series of experiments were conducted using CNC micro-milling of polycarbonate glass by varying feed rate, depth of cut, and tool coating. The three types of cutting tools used in this study were uncoated, titanium nitride (TiN) coated, and titanium aluminum nitride (TiAlN) coated tungsten carbide tools. The cutting forces have been recorded using the Kistler force dynamometer and the tool wear were analyzed using scanning electron microscope (SEM). It was found that all tools had reduced instances of failure, chipping, and abrasion at a moderately higher feed rate and depth of cut. Both very low and high feed rate were found to result in comparatively higher tool wear. The cutting forces increased with an increase of depth of cut, except for the TiAlN coated tool in some instances. With the increase of feed rate, the cutting forces gradually increased or stayed relatively constant across all depths of cut. It was found that the TiAlN coated tool reduced the amount of tool wear and cutting force across all feed rates and depths of cut. There is also a critical depth of cut around 0.3–0.5 mm and feed rate around 576–768 mm/min that reduced the amount of tool wear for the micro-milling of polycarbonate glass. Finally, the numerical modeling and simulation results of cutting forces were found to be in good agreement with the experimental cutting forces and the validated FEM models were then used to predict the cutting forces for higher spindle speed.

2012 ◽  
Vol 445 ◽  
pp. 62-67 ◽  
Author(s):  
J.B. Saedon ◽  
S.L. Soo ◽  
D.K. Aspinwall ◽  
A. Barnacle

The paper presents an experimental investigation into the slotting of hardened AISI D2 (~62HRC) tool steel using 0.5mm diameter coated (TiAlN) tungsten carbide (WC) end mills. SEM analysis of tool morphology and coating integrity was undertaken on all tools prior to testing. Tool wear details are given based on resulting cutter diameter and slot width reduction. In addition, cutting forces are also presented together with details of workpiece burr formation. A full factorial experimental design was used with variation of cutting speed, feed rate and depth of cut, with results evaluated using analysis of variance (ANOVA) techniques. Parameter levels were chosen based on microscale milling best practice and results from preliminary testing. Main effects plots and percentage contribution ratios (PCR) are included for the main factors. Cutting speed was shown to have the greatest effect on tool wear (33% PCR). When operating at 50m/min cutting speed with a feed rate of 8µm/rev and a depth of cut of 55µm, cutter diameter showed a reduction of up to 82µm for a 520mm cut length. SEM micrographs of tool wear highlighted chipping / fracture as the primary wear mode with adhered workpiece material causing further attritious wear when machining was continued up to 2.6m cut length. All tests produced burrs on the top edges of the slots which varied in size / width to a lesser or greater degree. Under the most severe operating conditions, burr width varied from approximately 50µm to more than 220µm over the 520mm cut length. Cutting forces in general were less than 12N up to test cessation.


2005 ◽  
Vol 127 (2) ◽  
pp. 262-270 ◽  
Author(s):  
Yong Huang ◽  
Steven Y. Liang

Quantitative understanding of cutting forces under hard turning conditions is important for thermal modeling, tool life estimation, chatter prediction, and tool condition monitoring purposes. Although significant research has been documented on the modeling of forces in the turning operation in general, turning of hardened materials involves several distinctive process conditions, including negative tool rake angle, large tool nose radius, and rapid tool wear. These process conditions warrant specific treatment in the analysis of cutting forces. This paper first addresses these issues by formulating an oblique chip formation force model through the extension of a two-dimensional (2D) mechanistic force model while considering the effect of tool geometry complexities. The coefficients of the mechanistic force model are estimated by applying a genetic algorithm in overcoming the lack of explicit normal equations. Then the forces occurring due to flank wear are modeled by extending a 2D worn tool force modeling approach into a three-dimensional analysis to accommodate the effect of low feed rate, small depth of cut, and relatively large tool nose radius in hard turning. The total cutting forces are the linear summation of forces due to chip formation and forces due to flank wear. The model-predicted forces match well with experimental results in the turning of hardened 52100 bearing steel under practical cutting conditions (low feed rate, small depth of cut, and gentle cutting speed) using cubic boron nitride (CBN) tools under the progressive tool flank wear conditions.


2021 ◽  
Vol 54 (2) ◽  
pp. 325-334
Author(s):  
Sampath Kumar Thepperumal ◽  
Vignesh Margabandu ◽  
Ramanujam Radhakrishnan ◽  
John Rajan Amaladas ◽  
Shri Vignesh Ananthakrishnan

In this present research, the machinability studies of TiAlN/TiCN, TiCN/TiAlN coated and uncoated inserts were investigated on machining custom 450 alloy. The machining input parameters such as feed rate (f), cutting speed (V) and depth of cut (d) are set using orthogonal array. The machining output parameters such as surface roughness, tool wear and cutting forces were studied for its parametric contribution and it was analyzed using Analysis of Variance (ANOVA). Further, the tool wear obtained was studied using scanning electron microscopic images and energy dispersive spectroscopy analysis was conducted to check the addition of work material elements to the coated tool surface. The results show that, the feed rate is the most contributing factor in deciding resultant forces, surface roughness and tool wear respectively. TiAlN/TiCN coated carbide tool has obtained improved machinability, when compared to TiCN/TiAlN coated carbide and uncoated carbide inserts. To obtain one optimal level for all three responses of three types of tools, multi criteria decision making approach, named utility concept approach is selected. Based on the MCDM analysis, it is found that trial number 4 gives better experimental output of improved surface integrity, lower resultant force and less tool wear for all types of tools.


2020 ◽  
Vol 24 (1) ◽  
Author(s):  
Sivaranjani Gali ◽  
Suresh Chiru

Objective: For a dental material to be machinable for CAD/CAM technology, it must offer convenient machining, under a given set of cutting conditions. Quantitative evaluation of machinability has been assessed in literature through various parameters such as tool wear, penetration rates, surface roughness, cutting force and power. A machinable ceramic will typically demonstrate a higher tool penetration rate with signs of reduced diamond tool wear and edge chipping. The purpose of this in vitro study was to evaluate the feasibility of machining an experimental ceramic, 20 wt.% zirconia reinforced mica glass ceramics (G20Z) for indirect dental restorations and compare the tool penetration rates of G20Z to commercially available dental ceramics, Presintered Zirconia (PSZ) and IPS emax CAD. Material and Methods:  Precursors of base glass (SiO2 -Al2O3 -K2O -MgO-B2O3 -F) were melted at 15000C for 2 h in a platinum crucible and quenched in deionised water. The glass frit was ball milled with 20 wt. % YSZ (G20Z) and subject to two stage heat treatment in a muffle furnace. Specimens of G20Z (12 X 2 mm) were evaluated for their feasibility of machining under varying spindle speed, depth of cut, and feed rates. Influence of depth of cut, spindle speed and feed rate (vc=8000-16000 rpm, d=0.4-0.8 mm, f=0.1- 0.3 mm/tooth) on cutting forces, material response, surface roughness and tool wear were investigated. Tool penetration rates, tool wear and margin chipping were also evaluated and compared with Pre-sintered Zirconia (PSZ)  and e.max CAD in a custom dental milling surveyor at 30,000 rpm with a load of 0.98 N under water lubrication for 6 min. Tool penetration rates were calculated as the ratio of length of cut and milling time with a measuring microscope and scanning electron microscope was used for tool wear and edge chipping. ANOVA and Tukey Kramer tests were used for statistically comparing the means of each group. Results: Spindle speed and feed rate play a significant role in influencing surface roughness, thrust force, cutting forces and tool wear. Penetration rates of G20Z (0.32 ±0.12 mm/min) was significantly greater than PSZ (0.26 ±0.06 mm/min) and IPS e.max CAD (0.21 ±0.05 mm/min). SEM observations reveal tool abrasion and edge chipping regardless of the ceramic type. Conclusion: High spindle speeds delivers low cutting forces with an average surface roughness of 1.61 µm, with abrasive wear of the tool insert and brittle fracture of zirconia mica glass ceramic composites. G20Z with its machinable nature demonstrates greater tool penetration rates than PSZ and IPS e.max CAD. Tool wear and edge chipping is seen in all the investigated ceramics.   Keywords Machinability, Dental Ceramics, Mica Glass-Ceramics, Dental Zirconia, Tool penetration rates.  


Author(s):  
Muhammad Pervej Jahan ◽  
Jianfeng Ma ◽  
Craig Hanson ◽  
Greg K Arbuckle

A growing application of polycarbonates is in the microfluidic disks and DNA detection devices, where surface finish of the micro-channels plays an important role. This study intends to investigate the tool wear and surface finish generated during micro slot milling of polycarbonate using uncoated, TiN-coated, and TiAlN-coated tungsten carbide tools. The effects of tool coating and the machining parameters on the possible reduction of tool wear and improvement of surface finish were investigated. It was found that with careful selection of cutting parameters and tool coating, micro-channels with smoother surface finish, minimum burrs around the edges, and controlled tool wear can be obtained using micro-milling. A combination of medium range of depth of cut and feed rate was found to improve the surface finish in polycarbonates, as well as minimize the tool wear. The TiAlN tool coating was found to only be effective in reducing tool wear without much effect on the machined surface. The adhesion was found to be the most dominating tool wear mechanism in uncoated carbide tool, followed by cutting edge chipping and tool nose’s plastic failure. The adhesion wear was found to be reduced in coated tools, especially in TiAlN-coated tools, although delamination wear started to dominate in the coated tools when higher feed rate and depth of cut were used. Both lower and higher of depths of cut were found to generate higher tool wear and leave traces of tool marks on the machined surface.


2010 ◽  
Vol 431-432 ◽  
pp. 365-368
Author(s):  
Wen Zhuang Lu ◽  
Dun Wen Zuo ◽  
B. Yang ◽  
Feng Xu ◽  
M. Wang

The performance of CVD diamond coated cemented carbide cutting tool in comparison with K10 uncoated cemented carbide tool in the dry turning of Al-20wt%Si aluminum-silicon hypereutectic alloy was investigated. The obtained results showed a better cutting performance for CVD diamond coated tool in machining Al-20wt%Si, particularly in terms of cutting force, tool wear, surface roughness, when compared with K10. The cutting forces are lower with CVD diamond coated tool and the depth of cut promotes a great increment of the cutting force. The tool wear processes taking place in the tool tips in all cutting conditions. The tool life of CVD diamond coated tool is longer than that of the uncoated K10. The surface roughness Ra increases obviously with the increase of feed rate using a CVD diamond coated cutting tool. A higher feed rate produces surface rougher. The chip morphology in machining of Al-20wt%Si alloy by CVD diamond coated tool is continuous. The tests showed that the CVD diamond coated tool can be applied on the K10 tool at low feed rate to produce high quality surfaces.


Author(s):  
Emel Kuram ◽  
Babur Ozcelik

This study focused on the optimization of micro-milling parameters for two extensively used aerospace materials (titanium and nickel-based superalloy). The experiments were planned using Taguchi experimental design method, and the influences of spindle speed, feed rate and depth of cut on machining outputs, namely, tool wear, surface roughness and cutting forces, were determined. Tool wear, surface roughness and cutting forces measured in micro-milling of Ti6Al4V titanium alloy and Inconel 718 workpiece materials were optimized by employing Taguchi’s signal-to-noise ratio. The percentage contribution of micro-milling parameters, namely, spindle speed, feed rate and depth of cut, on tool wear, surface roughness and cutting forces was indicated by analysis of variance. The regression models identifying the relationship between the input variables and the output responses were also fitted using experimental data to predict output responses without conducting the experiments. Efficiency of regression models was determined using correlation coefficients, and the predicted values were compared with experimental results. From results, it was concluded that the established regression models could be employed for predicting tool wear, surface roughness and cutting forces in micro-milling of Ti6Al4V titanium alloy and Inconel 718 workpiece materials.


2016 ◽  
Vol 836-837 ◽  
pp. 168-174 ◽  
Author(s):  
Ying Fei Ge ◽  
Hai Xiang Huan ◽  
Jiu Hua Xu

High-speed milling tests were performed on vol. (5%-8%) TiCp/TC4 composite in the speed range of 50-250 m/min using PCD tools to nvestigate the cutting temperature and the cutting forces. The results showed that radial depth of cut and cutting speed were the two significant influences that affected the cutting forces based on the Taguchi prediction. Increasing radial depth of cut and feed rate will increase the cutting force while increasing cutting speed will decrease the cutting force. Cutting force increased less than 5% when the reinforcement volume fraction in the composites increased from 0% to 8%. Radial depth of cut was the only significant influence factor on the cutting temperature. Cutting temperature increased with the increasing radial depth of cut, feed rate or cutting speed. The cutting temperature for the titanium composites was 40-90 °C higher than that for the TC4 matrix. However, the cutting temperature decreased by 4% when the reinforcement's volume fraction increased from 5% to 8%.


Author(s):  
Sandro Turchetta ◽  
Luca Sorrentino ◽  
Gianluca Parodo

Diamond tools suitable for machining operations of natural stones can be divided into two groups: cutting tools, including blades, the circular blades and the wires, and the surface machining ones, involving mills and grinders, that can be of different shapes. For the stone sawing process, the most adopted tool type is the diamond mill, whose duration and performance are influenced by various elements such as: the mineralogical characteristics of the material to be machined; the working conditions such as the depth of cut, the feed rate and the spindle speed; the production process of the diamond segment and the characteristics of both the matrix and the diamond, such as the size, the type and the concentration of the diamonds and the metal bond formulation hardness. This work allows to indirectly assess the wear of sintered diamond tools by signal analysis (in time and frequency domain) of the cutting force components acquired in the process. The results obtained represent a fundamental step for the development of a sensory supervision system capable of assessing the tool wear and hence to modify the process parameters in process, in order to optimize cutting performance and tool life.


Micromachines ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 86 ◽  
Author(s):  
Tao Wang ◽  
Xiaoyu Wu ◽  
Guoqing Zhang ◽  
Bin Xu ◽  
Yinghua Chen ◽  
...  

The micro machinability of Zr41.2Ti13.8Cu12.5Ni10Be22.5 bulk metallic glass (BMG) was investigated by micro milling with coated cemented carbide tools. The corresponding micro milling tests on Al6061 were conducted for comparison. The results showed that the tool was still in stable wear stage after milling 300 mm, and the surface roughness Ra could be maintained around 0.06 μm. The tool experienced only slight chipping and rubbing wear after milling the BMG, while a built-up edge and the coating peeling off occurred severely when milling Al6061. The influence of rotation speed on surface roughness was insignificant, while surface roughness decreased with the reduction of feed rate, and then increased dramatically when the feed rate was below 2 μm/tooth. The surface roughness increased gradually with the axial depth of cut (DOC). Milling force decreased slightly with the increase in rotation speed, while it increased with the increase in axial DOC, and the size effect on milling force occurred when the feed rate decreased below 1 μm/tooth. The results of X-ray diffraction (XRD) showed that all milled surfaces were still dominated by an amorphous structure. This study could pave a solid foundation for structural and functional applications.


Sign in / Sign up

Export Citation Format

Share Document