scholarly journals Finite Element Model Validation of the Hybrid-III Rail Safety (H3-RS) Anthropomorphic Test Device (ATD)

Author(s):  
Shaun Eshraghi ◽  
Kristine Severson ◽  
David Hynd ◽  
A. Benjamin Perlman

The Hybrid-III Rail Safety (H3-RS) anthropomorphic test device (ATD), also known as a crash test dummy, was developed by the Rail Safety and Standards Board (RSSB), DeltaRail (now Resonate Group Ltd.), and the Transport Research Laboratory (TRL) in the United Kingdom between 2002 and 2005 for passenger rail safety applications [1]. The H3-RS is a modification of the standard Hybrid-III 50th percentile male (H3-50M) ATD with additional features in the chest and abdomen to increase its biofidelity and eight sensors to measure deflection. The H3-RS features bilateral (left and right) deflection sensors in the upper and lower chest and in the upper and lower abdomen; whereas, the standard H3-50M only features a single unilateral (center) deflection sensor in the chest with no deflection sensors located in the abdomen. Additional H3-RS research was performed by the Volpe National Transportation Systems Center (Volpe Center) under the direction of the U.S. Department of Transportation, Federal Railroad Administration (FRA) Office of Research, Development, and Technology. The Volpe Center contracted with TRL to conduct a series of dynamic pendulum impact tests [2]. The goal of testing the abdomen response of the H3-RS ATD was to develop data to refine an abdomen design that produces biofidelic and repeatable results under various impact conditions with respect to impactor geometry, vertical impact height, and velocity. In this study, the abdominal response of the H3-RS finite element (FE) model that TRL developed is validated using the results from pendulum impact tests [2]. Results from the pendulum impact tests and corresponding H3-RS FE simulations are compared using the longitudinal relative deflection measurements from the internal sensors in the chest and abdomen as well as the longitudinal accelerometer readings from the impactor. The abdominal response of the H3-RS FE model correlated well with the physical ATD as the impactor geometry, vertical impact height, and velocity were changed. There were limitations with lumbar positioning of the H3-RS FE model as well as the material definition for the relaxation rate of the foam in the abdomen that can be improved in future work. The main goal of validating the abdominal response of the dummy model is to enable its use in assessing injury potential in dynamic sled testing of crashworthy workstation tables, the results of which are presented in a companion paper [3]. The authors used the model of the H3-RS ATD to study the 8G sled test specified in the American Public Transportation Association (APTA) workstation table safety standard [4]. The 8G sled test is intended to simulate the longitudinal crash accleration in a severe train-to-train collision involving U.S. passenger equipment. Analyses of the dynamic sled test are useful for studying the sensitivity of the sled test to factors such as table height, table force-crush behavior, seat pitch, etc., which help to inform discussions on revisions to the test requirements eventually leading to safer seating environments for passengers.

Author(s):  
Shaun Eshraghi ◽  
Kristine Severson ◽  
David Hynd ◽  
A. Benjamin Perlman

Fixed workstation tables in passenger rail coaches can pose a potential injury hazard for passengers seated at them during an accident. Tables designed to absorb impact energy while minimizing contact forces can reduce the risk of serious injury, while helping to compartmentalize occupants during a train collision. The Rail Safety and Standards Board (RSSB) in the U.K. issued safety requirement GM/RT2100, Issue 5 [1] and the American Public Transportation Association (APTA) in the U.S. issued safety standard APTA PR-CS-S-018-13, Rev. 1 [2] with the goals of setting design and performance requirements for energy-absorbing workstation tables. The U.S. Department of Transportation, Federal Railroad Administration (FRA) Office of Research, Development and Technology directed the Volpe National Transportation Systems Center (Volpe Center) to evaluate the performance of the Hybrid-III Rail Safety (H3-RS) anthropomorphic test device (ATD), also known as a test dummy, in the APTA sled test in order to incorporate a reference to the H3-RS in the safety standard. The Volpe Center contracted with the manufacturer of the H3-RS, Transport Research Laboratory (TRL), in the U.K. to conduct a series of sled tests [3] with energy-absorbing tables, donated by various table manufacturers. The tables were either already compliant with the RSSB table standard or were being developed to comply with the APTA table standard. The sled test specified in Option A of the APTA table standard involves the use of two different 50th percentile male frontal impact ATDs. The H3-RS and the standard Hybrid-III (H3-50M) ATDs performed as expected. The H3-RS, which features bilateral deflection sensors in the chest and abdomen, was able to measure abdomen deflections while the H3-50M, which features a single sensor measuring chest compression, was not equipped to measure abdomen deflection. This study attempts to validate a finite element (FE) model of the APTA 8G sled test with respect to the thorax response of the H3-RS and H3-50M. The model uses a simplified rigid body-spring representation of one of the energy absorbing tables tested by TRL. The FE models of the H3-RS ATD and the H3-50M ATD were provided by TRL and LSTC, respectively. Results from the sled tests and FE simulations are compared using data obtained from the chest accelerometer, the chest and abdomen deflection sensors, and the femur load cells. Using video analysis, the gross motion of the dummies and table are also compared. Technical challenges related to model validation of the 8G sled test are also discussed. This study builds on previous analyses conducted to validate the abdomen response of the H3-RS FE model, which are presented in a companion paper [4].


2019 ◽  
Vol 141 (3) ◽  
Author(s):  
Derek A. Jones ◽  
James P. Gaewsky ◽  
Mona Saffarzadeh ◽  
Jacob B. Putnam ◽  
Ashley A. Weaver ◽  
...  

The use of anthropomorphic test devices (ATDs) for calculating injury risk of occupants in spaceflight scenarios is crucial for ensuring the safety of crewmembers. Finite element (FE) modeling of ATDs reduces cost and time in the design process. The objective of this study was to validate a Hybrid III ATD FE model using a multidirection test matrix for future spaceflight configurations. Twenty-five Hybrid III physical tests were simulated using a 50th percentile male Hybrid III FE model. The sled acceleration pulses were approximately half-sine shaped, and can be described as a combination of peak acceleration and time to reach peak (rise time). The range of peak accelerations was 10–20 G, and the rise times were 30–110 ms. Test directions were frontal (−GX), rear (GX), vertical (GZ), and lateral (GY). Simulation responses were compared to physical tests using the correlation and analysis (CORA) method. Correlations were very good to excellent and the order of best average response by direction was −GX (0.916±0.054), GZ (0.841±0.117), GX (0.792±0.145), and finally GY (0.775±0.078). Qualitative and quantitative results demonstrated the model replicated the physical ATD well and can be used for future spaceflight configuration modeling and simulation.


Author(s):  
Anand Hammad ◽  
Anil Kalra ◽  
Prashant Khandelwal ◽  
Xin Jin ◽  
King H. Yang

Injuries to the upper extremities that are caused by dynamic impacts in crashes, including contact with internal instrument panels, has been a major concern, especially for smaller female occupants, and the problem worsens with increasing age due to reduced strength of the bones. From the analysis of 1988–2010 CDS unweighted data, it was found that risk of AIS ≥ 2 level for the arm was 58.2±20.6 percent higher in females than males, and the injury risk for a 75-year-old female occupant relative to a 21-year-old subjected to a similar physical insult was 4.2 times higher. Although injuries to upper extremities are typically not fatal, they can have long-term effects on overall quality of life. Therefore, it is important to minimize risks of injuries related to upper extremities, especially for elderly females, who are most at risk. Current anthropomorphic surrogates, like crash-test dummies, cannot be directly used to study injury limits, as these dummies were developed mainly to represent the younger population. The current study is focused on the development of a finite element (FE) model representing the upper extremity of an elderly female. This can be further used to analyze the injury mechanisms and tolerance limits for this vulnerable population. The FE mesh was developed through Computer Tomography (CT) scanned images of an elderly female cadaver, and the data included for validation of the developed model were taken from the experimental studies published in scientific literature, but only the data directly representing elderly females were used. It was found that the developed model could predict fractures in the long bones of elderly female specimens and could be further used for analyzing injury tolerances for this population. Further, it was determined that the developed segmental model could be integrated with the whole body FE model of the elderly female.


Author(s):  
Costin D. Untaroiu ◽  
Jacob B. Putnam ◽  
Jeremy Schap ◽  
Matt L. Davis ◽  
F. Scott Gayzik

Pedestrians represent one of the most vulnerable road users and comprise nearly 22% of the road crash related fatalities in the world. Therefore, protection of pedestrians in the car-to-pedestrian collisions (CPC) has recently generated increased attention with regulations which involve three subsystem tests for adult pedestrian protection (leg, thigh and head impact tests). The development of a finite element (FE) pedestrian model could be a better alternative that characterizes the whole-body response of vehicle–pedestrian interactions and assesses the pedestrian injuries. The main goal of this study was to develop and to preliminarily validate a FE model corresponding to a 50th male pedestrian in standing posture. The FE model mesh and defined material properties are based on the Global Human Body Modeling (GHBMC) 50th percentile male occupant model. The lower limb-pelvis and lumbar spine regions of the human model were preliminarily validated against the post mortem human surrogate (PMHS) test data recorded in four-point lateral knee bending tests, pelvic impact tests, and lumbar spine bending tests. Then, pedestrian-to-vehicle impact simulations were performed using the whole pedestrian model and the results were compared to corresponding pedestrian PMHS tests. Overall, the preliminary simulation results showed that lower leg response is close to the upper boundaries of PMHS corridors. The pedestrian kinematics predicted by the model was also in the overall range of test data obtained with PMHS with various anthropometries. In addition, the model shows capability to predict the most common injuries observed in pedestrian accidents. Generally, the validated pedestrian model may be used by safety researchers in the design of front ends of new vehicles in order to increase pedestrian protection.


2018 ◽  
Author(s):  
Kyle P. McNamara ◽  
Derek A. Jones ◽  
James P. Gaewsky ◽  
Jacob B. Putnam ◽  
Jeffrey T. Somers ◽  
...  
Keyword(s):  

2013 ◽  
Vol 80 (5) ◽  
Author(s):  
Luciana Arronche ◽  
Israel Martínez ◽  
Valeria La Saponara ◽  
Elias Ledesma

In this work, two hybrid composite structures were designed, modeled, and tested for improved resistance to impact. They were inspired by bistable composite structures, which are structures composed of two parts: a so-called “main link” and a so-called “waiting link.” These links work together as a mechanism that will provide enhanced damage tolerance, and the structure exhibits a bistable stress/strain curve under static tension. The function of the main link is to break early, at which point the waiting link becomes active and provides a redundant load path. The goal of the current study was to design, manufacture, and test a similar concept for impact loading and achieve greatly improved impact resistance per unit weight. In the current project, the main link was designed to be a brittle composite material (in this case, woven carbon/epoxy) exposed to impact, while the waiting link was chosen to be made with a highly nonlinear and strong composite material (in this case, polyethylene/epoxy), on the opposite surface. Hence, the structure, if proven successful, can be considered an enhanced hybrid concept. An explicit finite element (FE) commercial code, LS-DYNA, was used to design and analyze the baseline as well as two proposed designs. The simulations' methodology was validated with results published in the literature, which reported tests from linear fiber-reinforced composites. The plots were obtained via the ASCII files generated from the FE code, processed using matlab®, and compared to experimental impact tests. An instrumented drop-weight testing machine performed impact tests, and a high-speed camera validated the specimens' displacement under impact. It is shown that the FE model provided qualitative behavior very consistent with the experiments but requires further improvements. Experimentally, it is shown that one of the two enhanced hybrid models leads to up to a 30% increase of returned energy/weight when compared to its baseline and, therefore, is worthy of further investigations.


2019 ◽  
Vol 2 (SI2) ◽  
pp. SI105-SI113
Author(s):  
Lý Hùng Anh ◽  
Dinh Bao Nguyen ◽  
Anh Huy Nguyen

For study of car-pedestrian crashes, it is two common methods that can be employed: conducting crash tests with mechanical dummies and simulating car crashes on computer. The former is a traditional way and gives good results compared with real life car impact; however, its disadvantage is very expensive test equipment and generally more time-consuming than the latter because after every crash test, experimental vehicles as well as dummies need repairing to be ready for the next experiments. Therefore, crash test simulation using finite-element method is more and more popular in the automobile industry because of its feasibility and cost saving. The majority of finite element dummy models used in crash simulation. Particularly, it is popular to use Hybrid III 50th dummy model which is built based on fiftieth percentile male (equal in height and weight of the average North American). Thus, it is necessary to develop a scaling algorithm to scale a reference dummy size into a desired one without rebuilding the entire model. In this paper, the Hybrid III dummy model provided by LS-DYNA software is scaled to suit Vietnamese biomechanical characteristics. Scaling algorithm comprises dummy geometry, inertial properties and joint properties is utilized. In order to estimate level of head injury – brain concussion by using numerical simulation, the correlation between Head Injury Criterion (HIC) and Abbreviated Injury Scale (AIS) is introduced. In addition, the Hybrid III dummy model in crashworthiness simulation is presented in key frame picture. Numerical simulation approach is validated by comparing results of head acceleration and HIC obtain from this study with experimental data and numerical simulation results in other publication


2017 ◽  
Vol 2 (4) ◽  
pp. 385
Author(s):  
A. Prasanna ◽  
G. K. Kannan ◽  
N. Mohan ◽  
Shivaraj Yaranal ◽  
Kartik S. Patil ◽  
...  

<p class="p1">Natural and manmade injuries due to terrorism, military weapon and accidents lead to cutting edge research for engineers and clinicians alike. The study of injury and its mechanism can help in predicting the severity of an injury which in turn shall guide the engineers to design safer structures and medical specialists in treating casualties. This article summarizes the various advancements and technologies available in the field of Injury Analysis. The objective of the study is to quantify the levels of an injury which occurs when an Anthropomorphic Test Device is subjected to a given vertical impact load. As a baseline a half sine shock test simulating the vertical impact was carried out on Hybrid III 50th percentile male dummy and injury analysis was done based on the standards prescribed by NATO TR-HFM-090. In the present test the injury analysis predicts that the injury during the loading is well within 10% probability of an AIS 2 or greater (AIS 2+).</p>


Sign in / Sign up

Export Citation Format

Share Document