Couple Diffusion-Thermo-Mechanical Model for Life Prediction of a Turbine Engine Blade

Author(s):  
Samir (Sam) Naboulsi

The failure of engines on jet aircrafts during the past few years has prompted the National Transportation Safety Board (NTSB) to issue an “urgent” recommendation to increase inspections of the engines on U.S. aircraft. Such uncontained engine failures are particularly dangerous, because flying engine parts could puncture fuel or hydraulic lines, damage flight surfaces or even penetrate the fuselage and injure passengers. At issue is older engines found on small number of jets, and the safety and economic impact damage and fracture risk can have on aircraft engines. For example, high-pressure turbine blades are commonly removed from commercial aircraft engines that had been commercially flown by airlines. These engines were brought to the maintenance shop for refurbishment or overhaul. The blades were removed and inspected for damage. The damage was cataloged into three modes of failure, which are thermal-mechanical fatigue (TMF), Oxidation/Erosion (O/E), and Other (O). These show the complexity of damage in turbine engines and the different mechanisms associated with cause of damage. Hence, life prediction of turbine engine is crucial part of the management and sustainment plan to aircraft jet engine. Fretting is often the root cause of nucleation of cracks at attachment of structural components at or in the vicinity of the contact surfaces. Previous effort presented a model to predict fretting fatigue in turbine engine, which is one of the primary phenomena that leads to damage or failure of blade-disk attachments. The influence of thermal effect and temperature fluctuation during engine operation on fretting fatigue damage were investigated. Leveraging these existing capabilities, the present effort focuses on modeling another important damage mechanism in turbine engine blades, which is erosion at high temperatures. Thus a reaction-diffusion model is implemented in addition to the thermo-mechanical one. The model provides a mean to investigate erosion initiation and propagation in turbine engine blades.

Author(s):  
Sam Naboulsi

Life prediction of turbine engines is crucial part of the management and sustainment plan to aircraft jet engine. Fretting is one of the primary phenomena that leads to damage or failure of blade-disk attachments. Fretting is often the root cause of nucleation of cracks at attachment of structural components at or in the vicinity of the contact surfaces. It occurs when the blade and disk are pressed together in contact and experience a small oscillating relative displacement due to variations in engine speed and vibratory loading. It is a significant driver of fatigue damage and failure risk of disk blade attachments. Fretting is a complex phenomenon that depends on geometry, loading conditions, residual stresses, and surface roughness, among other factors. These complexities also go beyond the physics of material interactions and into the computational domain. This is an ongoing effort, and the Author has been working on computationally modeling the fretting fatigue phenomenon and damage in blade-disk attachment. The model has been evolving in the past few years, and it has been addressing various fretting conditions. The present effort includes the thermal effect and temperature fluctuation during engine operation, and it models the effects of blade to disk attachment’s thermal conditions and its influence on fretting fatigue damage. It further extends the earlier model to include a coupled fatigue damage model. It allows modeling higher speeds and longer durability associated with blade disk attachments. Finally, to demonstrate its capabilities and taking advantage of experimental validation model, the most recent numerical simulations will be presented.


Author(s):  
Kwai S. Chan ◽  
Michael P. Enright ◽  
Patrick J. Golden ◽  
Samir Naboulsi ◽  
Ramesh Chandra ◽  
...  

High-cycle fatigue (HCF) is arguably one of the costliest sources of in-service damage in military aircraft engines. HCF of turbine blades and disks can pose a significant engine risk because fatigue failure can result from resonant vibratory stresses sustained over a relatively short time. A common approach to mitigate HCF risk is to avoid dangerous resonant vibration modes (first bending and torsion modes, etc.) and instabilities (flutter and rotating stall) in the operating range. However, it might be impossible to avoid all the resonance for all flight conditions. In this paper, a methodology is presented to assess the influences of HCF loading on the fracture risk of gas turbine engine components subjected to fretting fatigue. The methodology is based on an integration of a global finite element analysis of the disk-blade assembly, numerical solution of the singular integral equations using the CAPRI (Contact Analysis for Profiles of Random Indenters) and Worst Case Fret methods, and risk assessment using the DARWIN (Design Assessment of Reliability with Inspection) probabilistic fracture mechanics code. The methodology is illustrated for an actual military engine disk under real life loading conditions.


Author(s):  
Kwai S. Chan ◽  
Michael P. Enright ◽  
Patrick J. Golden ◽  
Samir Naboulsi ◽  
Ramesh Chandra ◽  
...  

High-cycle fatigue (HCF) is arguably one of the costliest sources of in-service damage in military aircraft engines. HCF of turbine blades and disks can pose a significant engine risk because fatigue failure can result from resonant vibratory stresses sustained over a relatively short time. A common approach to mitigate HCF risk is to avoid dangerous resonant vibration modes (first bending and torsion modes, etc.) and instabilities (flutter and rotating stall) in the operating range. However, it might be impossible to avoid all the resonance for all flight conditions. In this paper, a methodology is presented to assess the influences of HCF loading on the fracture risk of gas turbine engine components subjected to fretting fatigue. The methodology is based on an integration of a global finite element analysis of the disk-blade assembly, numerical solution of the singular integral equations using the CAPRI (Contact Analysis for Profiles of Random Indenters) and Worst Case Fret methods, and risk assessment using the DARWIN (Design Assessment of Reliability with Inspection) probabilistic fracture mechanics code. The methodology is illustrated for an actual military engine disk under real life loading conditions.


2021 ◽  
pp. 483-490
Author(s):  
V.P. Pankov ◽  
S.V. Rumyantsev ◽  
V.D. Kovalev

Heat-resistant alloys, heat-resistant and heat-protective coatings are studied. The microstructure of plasma and diffusion coatings of turbine blades and their changes in the process of gas-turbine engine operation are described. Investigations of multilayer heat-protective coating of aircraft GTE turbine blades have been carried out and requirements to composition, structure, durability of its components — alloy, thermal barrier layer, binder coating, thermally grown oxide, ceramic surface coating — have been substantiated. As a result of the tests the characteristics of the developed coating and advantages in relation to serial coatings of GTE turbine blades have been confirmed.


2021 ◽  
Vol 110 ◽  
pp. 106513
Author(s):  
Lei Han ◽  
Cao Chen ◽  
Tongyue Guo ◽  
Cheng Lu ◽  
Chengwei Fei ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document