Structural Analysis of Ground Mounted Solar Panel Array

2018 ◽  
Author(s):  
Md Ashhar Tufail ◽  
Barun Pratiher

In the current study, CFD simulations and static structural analysis were carried out to estimate the wind loads for up and downstream wind directions on ground mounted arrayed solar panels. The goal of simulations is to estimate the loads (i.e. drag and lift forces and also moment coefficients) and wind pressure that act upon their surface. Static structural analysis coupled with CFD simulation is done to determine the total deformation due to wind loads on each panel. The motive of the study is to protect the integrity of the solar panels in a situation like cyclone and typhoon so that energy production is not hindered throughout their service life. Simulations were carried out on arrayed nine panels with changing various parameters (i.e. clearance height, inter row spacing between panels and panel inclination) that effect wind loading on the panels.

Author(s):  
Gys van Zyl ◽  
Stewart Long

Abstract Wind actions are important to consider when performing fitness for service assessment on storage tanks with damage. Tank design codes typically have rules where a design wind velocity is used to determine required dimensions and spacing of wind girders, and a uniform wind pressure is used to evaluate tank anchorage for uplift and overturning due to wind actions. These rules are of little use in a fitness for service assessment of localized damage, as the actual distribution of wind pressure on the wall and roof of a cylindrical tank is far from constant, and a better evaluation of the wind pressure distribution is desired when performing a level 3 fitness for service assessment. API 579/ASME FFS-1 provides no direct guidance relating to the application of wind loading but refers to the American Society of Civil Engineers Standard ASCE/SEI 7. Other international codes relating to wind loads, such as Eurocode EN-1991-1-4 and Australia/New Zealand Standard AS/NZS 1170.2 also contain guidance for the evaluation of wind actions on cylindrical tanks. This paper will present a review of these international codes by comparing their guidance for wind actions on cylindrical tanks, with specific emphasis on how this may affect a level 3 fitness for service assessment of a damaged storage tank.


Author(s):  
Astha Verma ◽  
Ashok Kumar Ahuja

Wind is one of the important loads to be considered while designing the roofs of low-rise buildings. The structural designers refer to relevant code of practices of various countries dealing with wind loads while designing building roofs. However, available information regarding wind pressure coefficients on cylindrical roofs is limited to single span only. Information about wind pressure coefficients on multi-span cylindrical roofs is not available in standards on wind loads. Present paper describes the details of the experimental study carried out on the models of low-rise buildings with multi-span cylindrical roofs in an open circuit boundary layer wind tunnel. Wind pressure values are measured at many pressure points made on roof surface of the rigid models under varying wind incidence angles. Two cases namely, single-span and two-span are considered. The experimental results are presented in the form of contours of mean wind pressure coefficients. Results presented in the paper are of great use for the structural designers while designing buildings with cylindrical roofs. These values can also be used by the experts responsible for revising wind loading codes from time to time.


2019 ◽  
Vol 10 (1) ◽  
pp. 73-78
Author(s):  
Ana Camelia Sauca ◽  
Tudor Milchiș ◽  
Ferdinánd-Zsongor Gobesz

Abstract A fully 3D numerical analysis of turbulent flow over a cluster of solar photovoltaic (PV) panels was performed in order to assess the total drag and lift forces, comparing the results with the values from the guidelines of the national standard. A Reynolds-Averaged Navier–Stokes (RANS) model was used in the numerical simulations, considering two acting directions of the wind along the length of the array (0 degree – front, and 180 degrees – reverse direction).


2014 ◽  
Vol 14 (04) ◽  
pp. 1450008 ◽  
Author(s):  
Bo Chen ◽  
Xiao-Yu Yan ◽  
Qing-Shan Yang

Wind pressure measurements were carried out for dome roofs with different rise–span ratios (f/L = 1/4,1/6,1/8) in a boundary wind tunnel. A parametric study was conducted to investigate the influences of wind loading and structural parameters on the wind-induced response and the universal equivalent static wind loads (ESWLs) of single-layer reticular dome shells, including the span, rise–span ratio, roof mass and the mean wind velocity. Results show that the rise–span ratio has a significant influence on the wind pressure distribution of the roof. High suction appears at the top of the roof with a larger rise–span ratio f/L = 1/4, and it appears at the top and leading edge when f/L is 1/6 or 1/8. Many vibration modes should be included to analyze the wind-induced response of dome roof structures, and this makes it very difficult to analyze the ESWL. The resonant response is larger than the background response. A method to calculate the universal ESWL for the building code is proposed for easy understanding by practicing engineers. Based on the distribution characteristics of the ESWL, simple fundamental vectors are constructed to recalculate the universal ESWL. This method is employed to divide the dome roof into four zones, and it also means that four fundamental vectors are used to evaluate the ESWL. Simplified expressions of universal ESWL in these four roof zones are proposed for the engineering design. All nodal displacements and structural member stresses under the universal ESWL agree well with actual peak responses.


2008 ◽  
Vol 10 (1) ◽  
pp. 22-27 ◽  
Author(s):  
Roch Plewik ◽  
Piotr Synowiec ◽  
Janusz Wójcik

Two-phase CFD simulation of the monodyspersed suspension hydraulic behaviour in the tank apparatus from a circulatory pipe The hydrodynamics in fluidized-bed crystallizers is studied by CFD method. The simulations were performed by a commercial packet of computational fluid dynamics Fluent 6.x. For the one-phase modelling (15), a standard k-ε model was applied. In the case of the two-phase flows the Eulerian multi-phase model with a standard k-ε method, aided by the k-ε dispersed model for viscosity, has been used respectively. The collected data put a new light on the suspension flow behaviour in the annular zone of the fluidised bed crystallizer. From the presented here CFD simulations, it clearly issues that the real hydraulic conditions in the fluidised bed crystallizers are far from the ideal ones.


2015 ◽  
Vol 6 (1) ◽  
pp. 11-17 ◽  
Author(s):  
G. Szabó ◽  
P. Enyedi ◽  
Gy. Szabó ◽  
I. Fazekas ◽  
T. Buday ◽  
...  

According to the challenge of the reduction of greenhouse gases, the structure of energy production should be revised and the increase of the ratio of alternative energy sources can be a possible solution. Redistribution of the energy production to the private houses is an alternative of large power stations at least in a partial manner. Especially, the utilization of solar energy represents a real possibility to exploit the natural resources in a sustainable way. In this study we attempted to survey the roofs of the buildings with an automatic method as the potential surfaces of placing solar panels. A LiDAR survey was carried out with 12 points/m2 density as the most up-to-date method of surveys and automatic data collection techniques. Our primary goal was to extract the buildings with special regard to the roofs in a 1 km2 study area, in Debrecen. The 3D point cloud generated by the LiDAR was processed with MicroStation TerraScan software, using semi-automatic algorithms. Slopes, aspects and annual solar radiation income of roof planes were determined in ArcGIS10 environment from the digital surface model. Results showed that, generally, the outcome can be regarded as a roof cadaster of the buildings with correct geometry. Calculated solar radiation values revealed those roof planes where the investment for photovoltaic solar panels can be feasible.


Author(s):  
Makoto Yamamoto ◽  
Masaya Suzuki

Multi-Physics CFD Simulation will be one of key technologies in various engineering fields. There are two strategies to simulate a multi-physics phenomenon. One is “Strong Coupling”, and the other is “Weak Coupling”. Each can be employed, based on time-scales of physics embedded in a problem. That is, when a time-scale of one physics is nearly same as that of the other physics, we have to use Strong Coupling to take into account the interaction between two physics. On the other hand, when one time-scale is quite different from the other one, Weak Coupling can be applied. Considering the present computer performance, Strong Coupling is difficult to be used in engineering design processes now. Therefore, we are focusing on Weak Coupling, and it has been applied to a number of multi-physics CFD simulations in engineering. We have successfully simulated sand erosion, ice accretion, particle deposition, electro-chemical machining and so on, with using Weak Coupling method. In the present study, the difference between strong and weak couplings is briefly described, and two examples of our multi-physics CFD simulations are expressed. The numerical results indicate that Weak Coupling strategy is promising in a lot of multi-physics CFD simulations.


2018 ◽  
Vol 140 (6) ◽  
Author(s):  
Halina Pawlak-Kruczek ◽  
Robert Lewtak ◽  
Zbigniew Plutecki ◽  
Marcin Baranowski ◽  
Michal Ostrycharczyk ◽  
...  

The paper presents the experimental and numerical study on the behavior and performance of an industrial scale boiler during combustion of pulverized bituminous coal with various shares of predried lignite. The experimental measurements were carried out on a boiler WP120 located in CHP, Opole, Poland. Tests on the boiler were performed during low load operation and the lignite share reached over to 36% by mass. The predried lignite, kept in dedicated separate bunkers, was mixed with bituminous coal just before the coal mills. Computational fluid dynamic (CFD) simulation of a cofiring scenario of lignite with hard coal was also performed. Site measurements have proven that cofiring of a predried lignite is not detrimental to the boiler in terms of its overall efficiency, when compared with a corresponding reference case, with 100% of hard coal. Experiments demonstrated an improvement in the grindability that can be achieved during co-milling of lignite and hard coal in the same mill, for both wet and dry lignite. Moreover, performed tests delivered empirical evidence of the potential of lignite to decrease NOx emissions during cofiring, for both wet and dry lignite. Results of efficiency calculations and temperature measurements in the combustion chamber confirmed the need to predry lignite before cofiring. Performed measurements of temperature distribution in the combustion chamber confirmed trend that could be seen in the results of CFD. CFD simulations were performed for predried lignite and demonstrated flow patterns in the combustion chamber of the boiler, which could prove useful in case of any further improvements in the firing system. CFD simulations reached satisfactory agreement with the site measurements in terms of the prediction of emissions.


Sign in / Sign up

Export Citation Format

Share Document