Development of a 3D Printed Soft Parallel Robot

Author(s):  
Martin Garcia ◽  
Amir Ali Amiri Moghadam ◽  
Ayse Tekes ◽  
Randy Emert

Abstract This paper reports on design, fabrication, and kinematics modeling of a 3D printed soft parallel robot equipped with soft pneumatic actuators. Soft robotics is an emerging field of research which facilitates safe human machine interface. Soft elastomeric actuators made through molding process are one of the key elements of soft robotic systems. However, molding process is tedious and time consuming making the fabrication process undesirable. Recently reported 3D printed soft pneumatic actuators pave the way for manufacturing of novel soft actuators and robots with complex geometries. The current work can be considered as a proof of concept for 3D printing of a soft parallel robot. The robot consists of two soft pneumatic actuators that are connected to two passive links by mean of flexible hinges. The robot has two degrees of freedom and can be used in planar manipulation tasks. Moreover, a number of robots can be configured to operate in a cooperative manner to increase the manipulation dexterity. A kinematic model is developed to simulate the motion of robot end-effector. Through application of the kinematic model it has been shown that the robot is capable of following any planar trajectories within its workspace. Also, pseudo-rigid-body model (PRBM) is used to develop a dynamic model of the soft robot to more accurately predict the robot interaction with its environment and also develop advanced control system for robust position control of the robot.

2021 ◽  
Vol 21 (2) ◽  
pp. 118-129
Author(s):  
Hasan Dawood Salman ◽  
Mohsin Noori Hamzah ◽  
Sadeq Hussein Bakhy

The kinematics modeling of the robot arm plays an important role in robot control. This paper presents the kinematic model of a three-degree of freedom articulated robot arm, which is designed for picking and placing an application with hand gripper, where a robot has been manufactured for that purpose. The forward kinematic model has been presented in order to determine the end effector’s poses using the Denavit-Hartenberg (DH) convention. For inverse kinematics, an algebraic solution based on trigonometric formulas mixed with geometric method was adopted for a 3 DOF modular manipulator taking into account the existence of a shoulder offset. MATLAB software was used as a tool to simulate and implement the motional characteristics of the robot arm, by creating a 3D visual software package under designing a Graphical User Interface "GUI" with a support simulation from robotic Toolbox (Rtb 10.3). Finally, an electronic interfacing circuit between the GUI program and the robot arm was developed using Arduino microcontroller to control the robot motion. The presented work can be applicable for learning the reality interface design methodology of the other kinds of robot manipulators and achieve a suitable solution for the motional characteristics


2020 ◽  
Vol 309 ◽  
pp. 05006
Author(s):  
Xiaolong Wang ◽  
Haodong Wang ◽  
Zhijiang Du ◽  
Wenlong Yang

Continuum manipulators have been widely adopted for single-port laparoscopy (SPL). A novel continuum manipulator with uniform notches which has two degrees of freedom (DOFs) is presented in this paper. The arrangement of flexible beams makes it own a higher load capacity. Its kinematic model is coupled with the mechanical model. The comprehensive elliptic integral solution (CEIS) is more practical in the actual deformation of the flexible beams. Based on that method, kinematics modeling is established from the driven space to the Cartesian space. The friction coefficient is an important factor which can affect the kinematic modeling. Therefore, an experimental platform is established to obtain the friction coefficient. The kinematic modeling is verified through the prototype. Experimental results show that the model has high precision.


Robotics ◽  
2019 ◽  
Vol 8 (3) ◽  
pp. 68 ◽  
Author(s):  
Moritz Schappler ◽  
Svenja Tappe ◽  
Tobias Ortmaier

Industrial manipulators and parallel robots are often used for tasks, such as drilling or milling, that require three translational, but only two rotational degrees of freedom (“3T2R”). While kinematic models for specific mechanisms for these tasks exist, a general kinematic model for parallel robots is still missing. This paper presents the definition of the rotational component of kinematic constraints equations for parallel robots based on two reciprocal sets of Euler angles for the end-effector orientation and the orientation residual. The method allows completely removing the redundant coordinate in 3T2R tasks and to solve the inverse kinematics for general serial and parallel robots with the gradient descent algorithm. The functional redundancy of robots with full mobility is exploited using nullspace projection.


2018 ◽  
Vol 224 ◽  
pp. 02034 ◽  
Author(s):  
Aleksey Kabanov ◽  
Aleksey Balabanov

This paper considers the anthropomorphic manipulator kinematics modeling problem. The considered anthropomorphic robot SAR-400 manipulator with five-fingered gripper has twelve degrees of freedom. In the paper the robot SAR-400 arm kinematic model and the simulation results are presented.


2018 ◽  
Vol 15 (5) ◽  
pp. 172988141880384 ◽  
Author(s):  
Jonqlan Lin ◽  
Chi Ying Wu ◽  
Julian Chang

Cable-driven parallel robots comprise driven actuators that allow controlled cables to act in parallel on an end-effector. Such a robotic system has a potentially large reachable workspace, large load capacity, high payload-to-weight ratio, high reconfigurability, and low inertia, relative to rigid link serial and parallel robots. In this work, a multi-degrees-of-freedom cable-suspended robot that can carry out pick-and-place tasks in large workspaces with heavy loads is designed. The proposed cable-driven parallel robot is composed of a rigid frame and an end-effector that is suspended from eight cables—four upper cables and four lower cables. The lengths of the cables are computed from the given positions of the suspended end-effector using a kinematic model. However, most multi-cable-driven robots suffer from interference among the cables, requiring a complex control methodology to find a target goal. Owing to this issue with cable-driven parallel robots, the whole control structure decomposes positioning control missions and allocates them into upper level and lower level. The upper level control is responsible for tracking the suspended end-effector to the target region. The lower level control makes fine positional modifications. Experimental results reveal that the hybrid control mode notably improves positioning performance. The wide variety of issues that are considered in this work apply to aerostats, towing cranes, locomotion interfaces, and large-scale manufacturing that require cable-driven parallel robots.


Author(s):  
Annika Raatz ◽  
Frank Trauden ◽  
Ju¨rgen Hesselbach

Since long time flexure hinges have been used in high precision devices instead of conventional bearings, e.g. ball or sliding bearings. Due to the natural lack of backlash, friction and slip-stick effects in flexure hinges, the accuracy of positioning or measurement devices can be highly increased. Recent applications for flexure hinges are seen in parallel robots. The integration of flexure hinges in parallel structures is quite simple because all joints, except for the drives, are passive. Since flexure hinges gain their mobility from an elastic and plastic deformation of matter, their kinematic behavior differs from the kinematics of ideal rotational joints. This leads to deviations of the compliant mechanism and its rigid body model. In this paper a kinematic model is proposed which allows for a compensation of the introduced hinge errors. Furthermore the dynamic model of a compliant parallel robot is derived and verified by means of simulation studies. This dynamic model can be used e.g. for model-based robot control algorithms or for the dimensioning of drives for compliant mechanisms.


Actuators ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 3 ◽  
Author(s):  
James Walker ◽  
Thomas Zidek ◽  
Cory Harbel ◽  
Sanghyun Yoon ◽  
F. Sterling Strickland ◽  
...  

This paper focuses on the recent development of soft pneumatic actuators for soft robotics over the past few years, concentrating on the following four categories: control systems, material and construction, modeling, and sensors. This review work seeks to provide an accelerated entrance to new researchers in the field to encourage research and innovation. Advances in methods to accurately model soft robotic actuators have been researched, optimizing and making numerous soft robotic designs applicable to medical, manufacturing, and electronics applications. Multi-material 3D printed and fiber optic soft pneumatic actuators have been developed, which will allow for more accurate positioning and tactile feedback for soft robotic systems. Also, a variety of research teams have made improvements to soft robot control systems to utilize soft pneumatic actuators to allow for operations to move more effectively. This review work provides an accessible repository of recent information and comparisons between similar works. Future issues facing soft robotic actuators include portable and flexible power supplies, circuit boards, and drive components.


Robotics ◽  
2020 ◽  
Vol 9 (4) ◽  
pp. 76
Author(s):  
Ahmad AlAttar ◽  
Petar Kormushev

Conventional control of robotic manipulators requires prior knowledge of their kinematic structure. Model-learning controllers have the advantage of being able to control robots without requiring a complete kinematic model and work well in less structured environments. Our recently proposed Encoderless controller has shown promising ability to control a manipulator without requiring any prior kinematic model whatsoever. However, this controller is only limited to position control, leaving orientation control unsolved. The research presented in this paper extends the state-of-the-art kinematic-model-free controller to handle orientation control to manipulate a robotic arm without requiring any prior model of the robot or any joint angle information during control. This paper presents a novel method to simultaneously control the position and orientation of a robot’s end effector using locally weighted dual quaternions. The proposed novel controller is also scaled up to control three-degrees-of-freedom robots.


2017 ◽  
Vol 9 (6) ◽  
Author(s):  
Kwun-Lon Ting ◽  
Kuan-Lun Hsu ◽  
Jun Wang

The paper presents a simple and effective kinematic model and methodology to assess and evaluate the extent of the position uncertainty caused by joint clearances for multiple-loop linkage and manipulators connected with revolute or prismatic pairs. The model is derived and explained with geometric rigor based on Ting's rotatability laws. The significant contributions include (1) the clearance link model for a P-joint that catches the translation and oscillation characteristics of the slider within the clearance and separates the geometric effect of clearances from the input error, (2) the generality of the method, which is effective for multiloop linkages and parallel manipulators, and (3) settling the dispute on the position uncertainty effect to parallel and serial robots due to joint clearance. The discussion is illustrated and carried out through symmetrically configured planar 8 bar parallel robots. It is found that at a target position, the uncertainty region of a three degrees-of-freedom (DOF) three-leg parallel robot is enclosed by a hexagon with curve edges, while that of its serial counterpart is enclosed by a circle included in the hexagon. A numerical example is presented. The finding and proof, though only based on three-leg planar 8 bar parallel robots, may have a wider implication suggesting that based on the kinematic effect of joint clearance, parallel robots tends to inherit more position uncertainty than their serial counterparts. The use of more loops in not only parallel robots but also single-DOF linkages cannot fully offset the adverse effect on position uncertainty caused by the use of more joints.


Sign in / Sign up

Export Citation Format

Share Document