A CFD Approach for the Simulation of an Entire Swash-Plate Axial Piston Pump Under Dynamic Operating Conditions

Author(s):  
Massimo Milani ◽  
Luca Montorsi ◽  
Gabriele Muzzioli ◽  
Andrea Lucchi

Abstract The paper proposes a CFD approach for the simulation of a swash-plate axial piston pump including the full 3D geometry of the real component. Different meshing techniques are integrated in order to reproduce all the internal motions of the pump. The overset mesh procedure is used to simulate the dynamic evolution in regions’ shape and the variable orientation between parts in the piston-slipper ball joints while the alternating motion of the piston is accounted for by sliding interfaces with the neighboring regions. The multiple dynamics of the different moving elements are implemented in terms of superposing motions in order to reproduce the real position time histories as a function of the rotational speed and the swash plate inclination angle. The proposed numerical model includes all the leakages that characterize the coupling of the many components of the pump and nominal values are assumed (i.e. 10μm) throughout the entire simulation. A pressure-dependent fluid density approach is adopted to improve the performance prediction of the pump under real operating conditions. Moreover, the turbulent behavior of the flow is addressed by means of the two equation k-omega SST model. Therefore the proposed modeling approach highlights the capabilities to address any type of swash-plate axial piston pump in order to simulate the entire machine under dynamic operations; the numerical results are discussed in terms of flow ripple, pressure distribution and fluid-dynamic forces.

1999 ◽  
Vol 123 (3) ◽  
pp. 463-470 ◽  
Author(s):  
X. Zhang ◽  
J. Cho ◽  
S. S. Nair ◽  
N. D. Manring

A new, open-loop, reduced order model is proposed for the swash plate dynamics of an axial piston pump. The difference from previous reduced order models is the modeling of a damping mechanism not reported previously in the literature. An analytical expression for the damping mechanism is derived. The proposed reduced order model is validated by comparing with a complete nonlinear simulation of the pump dynamics over the entire range of operating conditions.


Author(s):  
Yang Pan ◽  
Yibo Li ◽  
Dedong Liang

The vibration of a swash plate is caused by the piston forces and the control actuator acting on the swash plate. An earlier study of the outlet flow ripple of variable-displacement axial piston pumps assumed a fixed swash plate angle; it ignored the influence of swash plate vibration on the outlet flow ripple of the axial piston pump. In this work, a theoretical model of the outlet flow ripple and pressure pulsation was established in a constant power variable-displacement piston pump. The vibration of swash plate, flow leakage, and valve dynamic characteristics are considered in the theoretical model. The computational results of the theoretical model at different external load pressures are verified by comparison with experimental results. The vibration of the swash plate is strongly influenced by both the piston chamber pressure variation and the control actuator mechanism. The study proved the influence of the swash plate vibration on the outlet flow ripple and the pressure pulsation of an axial piston pump. Compared to the case of a fixed swash plate angle, accounting for swash plate vibration is much more suitable for the accurate determination of the outlet flow ripple and pressure pulsation of an axial piston pump. It is also shown that the vibration of the swash plate affects the valve plate design. Accordingly, valve plate optimization based on the theoretical model of the outlet flow ripple was also studied in this work. The amplitude of the instantaneous outlet flow ripple was considered as the optimization objective function. Finally, the optimized design parameters for a constant power variable-displacement swash plate axial piston pump were evaluated.


Author(s):  
Ganesh Kumar Seeniraj ◽  
Monika Ivantysynova

In designing an axial piston pump, lot of attention is given to the design of the valve plate. A well designed valve plate can reduce both flow pulsations as well as oscillating forces on the swash plate. In the presented study, a computational tool, CASPAR, has been used for investigating the effect of valve plate design on flow ripple (fluid borne noise), oscillating forces (structure borne noise) and volumetric efficiency. The impact of various valve plate design parameters such as precompression grooves, cross port, indexing and additional precompression volume will be presented using simulation results from CASPAR. The study also details how rate of pressurization and decompression inside the displacement chamber directly relate to the flow ripple, forces applied on swash plate and the control effort needed to stroke the swash plate. The effect of noise reduction techniques on volumetric efficiency will also be presented with simulated results.


2011 ◽  
Vol 311-313 ◽  
pp. 2215-2224 ◽  
Author(s):  
Yue Chao Song ◽  
Bing Xu ◽  
Hua Yong Yang

The objective of this paper is to study on the effect of the relief groove angle expressing the position in reducing noise of a swash plate axial piston pump. The relief groove is an important structure for reducing noise. Unfortunately the effect of the position of the relief groove is quite seldom explained in research reports. This paper focuses to this problem. A detail simulation model including the structure and position of the relief groove as well as the compressibility of oil film is built. The optimal shape of the relief groove is obtained by analyzing the flow ripple and cylinder pressure of the piston pump with the different shape of the relief groove on the port plate. The effect of the relief groove position and different structures on noise reducing is found by analyzing the flow ripple, cylinder pressure, sizes of relief groove and its location in different positions on the port plate. In this way the influences of the relief groove on reducing noise are found and the optimization of relief groove is obtained.


2018 ◽  
Vol 157 ◽  
pp. 08013 ◽  
Author(s):  
Tadeusz Złoto ◽  
Konrad Kowalski

The paper presents problems related to the twisting moment of the slipper. The load of the slipper and the piston has been presented and the complex formula of twisting moment of the slipper has been established. Achieved results has been presented graphically. The conducted research has indicated that the value of the twisting moment relays on both the exploitation and geometrical parameters.


Sign in / Sign up

Export Citation Format

Share Document