Angular Offset Splicing of Polarization Maintained (PANDA) Optical Fibers in an Electronics Manufacturing Environment

Author(s):  
Rohan Kulkarni ◽  
Krishnaswami Srihari

Panda fibers are used in applications where polarized light is required as an input. Panda fibers do not polarize the light passed through them but maintain the polarization of the incident light. The focus of this research endeavor is restricted to the angular offset splicing process of Polarization Maintaining (PM) panda fibers during optoelectronic assembly. In the splicing process, two or more fiber ends are fused together using a high electric discharge in such a manner that a minimum amount of losses are introduced [1]. However, in this particular research effort, angular offset was used to perform the splicing of panda fibers. Angular displacement is not desired during the splicing of panda fibers as it introduces losses due to phase changes that are caused because of the misalignment of stress rods. This study observes the effects of angular displacement on the splice loss. This paper focuses on the angular offset splicing of Panda fibers. The objective of the study was to observe the effect of angular displacement on the splice loss during the angular offset splicing process for panda fibers and outline the splicing parameters that have a significant impact on the splice loss. A design of experiments (DOE) approach has been used to perform the splicing. Even though the splicer provides a loss estimate, a real time splice loss measurement set up using a power meter and source was used to measure the actual loss. Offset distance, target loss and angular displacement were the factors selected for experimentation. Experiments were conducted using the aforementioned parameters. An effort has been made to obtain ‘best’ combination values for the significant parameters that can be used for production in an Electronic Manufacturing Services (EMS) provider’s environment.

2020 ◽  
Vol 126 (9) ◽  
Author(s):  
Joachim Jelken ◽  
Carsten Henkel ◽  
Svetlana Santer

Abstract We study the peculiar response of photo-sensitive polymer films irradiated with a certain type of interference pattern where one interfering beam is S-polarized, while the second one is P-polarized. The polymer film, although in a glassy state, deforms following the local polarization distribution of the incident light, and a surface relief grating (SRG) appears whose period is half the optical one. All other types of interference patterns result in the matching of both periods. The topographical response is triggered by the alignment of photo-responsive azobenzene containing polymer side chains orthogonal to the local electrical field, resulting in a bulk birefringence grating (BBG). We investigate the process of dual grating formation (SRG and BBG) in a polymer film utilizing a dedicated set-up that combines probe beam diffraction and atomic force microscopy (AFM) measurements, and permits acquiring in situ and in real-time information about changes in local topography and birefringence. We find that the SRG maxima appear at the positions of linearly polarized light (tilted by 45° relative to the grating vector), causing the formation of the half-period topography. This permits to inscribe symmetric and asymmetric topography gratings with sub-wavelength period, while changing only slightly the polarization of one of the interfering beams. We demonstrate an easy generation of sawtooth profiles (blazed gratings) with adjustable shape. With these results, we have taken a significant step in understanding the photo-induced deformation of azo-polymer films.


1999 ◽  
Vol 559 ◽  
Author(s):  
Yvo Dirix ◽  
Cees Bastiaansen ◽  
Walter Caseri ◽  
Paul Smith

ABSTRACTUniaxially oriented composites of high-density polyethylene and silver nanoparticles were prepared using solution-casting, melt-extrusion and solid-state drawing techniques. The absorption spectrum in the visible wavelength range of the drawn nanocomposites was observed to strongly depend on the polarization direction of the incident light. For instance, the nanocomposites appear bright yellow or red when the vibration direction of linearly polarized light is perpendicular or parallel, respectively, to the drawing axis. The optical anisotropy of the drawn nanocomposites originates from uniaxially oriented, pearl-necklace type of arrays of nanoparticles of high aspect ratios. The absorption spectrum of the nanocomposites can be shifted to higher wavelengths using appropriate annealing procedures. The annealing results in an increased size of the primary silver particles, due to Ostwald ripening, and consequently a range of polarization-dependent colors can be generated in the drawn nanocomposites. It is suggested that the drawn nanocomposite films can be used in liquid crystal displays (LCD's) were they serve a dual purpose in combining polarization filter and color filter. The new display configuration transmits colored light in both the on- and off-state of the device, this in contrast to a conventional color LCD which only transmits colored light in the off-state. As a consequence, an enhanced brightness and light (energy) efficiency of the new display set-up is envisioned.


2010 ◽  
Vol 17 (1) ◽  
pp. 125-131
Author(s):  
Howard J. Swatland

AbstractMicroscope and fiber-optic spectrophotometry of transmittance and backscattering both showed moss leaves to be capable of casting strong shadows, with a single leaf blocking approximately 90% of incident light from a point source. In leaves with only one layer of cells, the transmittance through the cytoplasm of single cells was similar to that for whole leaves. Analysis of cell wall birefringence by polarized-light interferometry indicated that cell walls might normally scatter rather than transmit light. Spectra transmitted through, or backscattered from, the upper green layers of moss were dominated by selective absorbance from chlorophyll, but there was also evidence of wavelength-dependent scattering, as detected in the lower layers of brown, dead moss. Specular reflectance from moss leaves was detected by polarimetry and may have contributed to the relatively high macroscopic transmittance of stationary moss in water. Shadowing by moss leaves was confirmed by dynamic measurements of mosses in turbulent water without bubbles. Flicker patterns from leaves were superimposed on the underwater flicker pattern created at the air-water interface, thus flecks of light were reduced in intensity, increased in frequency, and decreased in duration. This was detected with both point source and diffuse illumination of samples.


Author(s):  
Jochen Autschbach

It is shown how electronic transitions can be induced by the interaction with an electromagnetic wave of a suitable frequency. The rate of a transition between two electronic states induced by a time-dependent field is derived. The transition rate expression is used to calculate the absorption coefficient due to electronic transitions. The differential absorption coefficient for left and right circular polarized light is specific to chiral molecules and has different signs for a pair of enantiomers. The discussion then shifts to general functions describing the response of an atom or molecule to an external. The ideas developed thus far are then applied to the dynamic polarizability, molecular linear response functions in general, and the optical rotation. Linear response theory is set up within time-dependent molecular orbital theory. The Chapter concludes with a discussion of non-linear response properties and two-photon absorption.


2019 ◽  
Vol 33 (25) ◽  
pp. 1950305 ◽  
Author(s):  
Wenhua Zhu ◽  
Bo Wang ◽  
Chenhao Gao ◽  
Kunhua Wen ◽  
Ziming Meng ◽  
...  

This paper designed a novel three-output reflective packaged grating. The optimized parameters such as the period and depth of the high-efficiency three-output grating with an incident wavelength of 1550 nm can be calculated by rigorous coupled-wave analysis (RCWA). According to the optimized result, the grating can diffract the incident light energy into three orders with an efficiency of nearly 33% under the premise of second Bragg angle incidence and the given duty ratio of 0.5. The diffraction efficiency of the packaged grating is improved compared to the surface-relief three-output grating under second Bragg angle incidence, especially for TE-polarized light.


The iridescent cuticle of certain Rutelino scarab beetles, which is a form optically active and selectively reflects circularly polarized light, incorporates an NH 4 OH -extractable component The ultraviolet absorption spectrum of this component, together with its chromatographic and refractive properties, identify it as uric acid (2,6,8-trihydroxypurine). All species of Plusiotis examined have uric acid in their reflecting layers, as do several species of Anoplognathus. Plusiotis resplendens has a reflecting layer with a uric acid volume fraction of 0.7, P . optima a volume fraction of 0.6. The reflecting layer of P . resplenden s has an anticlockwise helicoidal architecture, the optical thickness of the helicoidal p itch being such that it constructively interferes with visible light wavelengths. An anticlockwise helicoid constructively interferes with only the left circularly polarized component of incident light, right circularly polarized light being transmitted without attenuation. P. resplendens has a 1.8 /xm thick unidirectional layer embedded within the helicoid which functions as a perfect halfwave retardation plate for wavelength 590 nm . This halfwave plate enables the helicoidal reflector in this species to reflect both left and right circularly polarized components of incident light. After passing through the halfwave plate, transmitted right circularly polarized light becomes left circularly polarized ; this light is now reflected and emerges from the cuticle right circularly polarized, after passing back through the halfwave plate. Consequently the total reflectivity of circularly polarized incident light is greater in P. resplendens than in any other species examined; the plate also reduces multiple internal reflexions. Interferometric analysis of the refractive properties of the helicoidal reflectors in species of Plusiotis showed that the ordered incorporation of uric acid increases the birefringence of the system by a factor of five times, e.g. the in tact birefringence of the unidirectional layer of P . resplendens is 0.166 at wavelength 560 nm ; after uric acid extraction the birefringence is reduced to 0.034. As the coefficient of reflexion of a helicoidal reflector is directly proportional to the birefringence of the individual planes comprising the helicoid, beetles incorporating uric acid into their reflecting surfaces reflect circularly polarized light far more efficiently than beetles lacking uric acid. Refractive index values for a single multicomponent plane of the helicoid have been summarized as a biaxial indicatrix, with the Z axis tilte dat 45° to the plane of the epicuticle. Beetle reflecting layers which incorporate uric acid have twenty times greater optical rotatory power compared with reflecting layers lacking this component. Mathematical treatments dealing with helicoidal reflectors predict the form optical rotatory power to be a function of the square of the birefringence, which is in agreement with the experimental observations. To enable uric acid to have the optical effects mentioned above, an epitaxial incorporation into the helicoidal framework is necessary. Although uric acid is a common cytoplasmic reflecting material in arthropods, this is the first record of its presence in an extracellular (cuticular) reflector.


2020 ◽  
Vol 27 (09) ◽  
pp. 1950201
Author(s):  
CHEN FU ◽  
BO WANG ◽  
WENHUA ZHU ◽  
KUNHUA WEN ◽  
ZIMING MENG ◽  
...  

This paper designed a novel three-port reflective surface-covered grating with a connecting layer. The grating can be used as a splitter, and the polarized light can be divided into zero order, first order and second order. Through rigorous coupled-wave analysis, the efficiency of the three orders of diffraction light is close to 33% under the condition that the incident light at 1550 nm is incident at the second Bragg angle and the given duty cycle is 0.5. The efficiency and bandwidth of the surface-covered grating are improved compared with that of the surface-relief grating reported in the past. Especially for transverse magnetic polarized light, the beam splitting effect is more uniform, the efficiency ratio of the zeroth order to first order can reach 1.01, and the efficiency ratio of the first order to second order can reach 1.


IEEE Access ◽  
2019 ◽  
Vol 7 ◽  
pp. 99283-99289
Author(s):  
Ziru Cui ◽  
Chaowei Yuan ◽  
Kehang Xu ◽  
Yong Sun ◽  
Shan Yin

2019 ◽  
Vol 30 (14) ◽  
pp. 2099-2111 ◽  
Author(s):  
Huilu Bao ◽  
Jianming Wen ◽  
Kang Chen ◽  
Jijie Ma ◽  
Dan Lei ◽  
...  

This article proposes an inertial piezoelectric actuator with hybrid design of asymmetrically clamping structures and a bias unit for the achievement of large angular velocity and high resolution. To investigate the influence of asymmetrical clamp and bias unit on the driving performance, two types of actuators were fabricated and tested. Combined effects from asymmetrical clamp and bias unit contribute to type A, while their subtractive effect is applied to type B. Using a scanning laser vibrometer, experiments were conducted to analyze the characteristics of the angular displacement and corresponding velocity. It is indicated that the measured first-order natural frequencies for above two types are 13.828 and 14.141 Hz, which agrees well with the simulation results of 16.666 and 17.379 Hz, respectively. Besides, compared with the actuators with simple asymmetrical clamping structure or bias unit, this hybrid actuator can obtain an angular velocity 6.87 rad/s at 80 V and 16 Hz and a resolution of 2.80 μrad under a square signal of 20 V and 1 Hz and an offset distance of −22 mm. As a result, the proposed actuators can achieve large angular velocity and high resolution, which is potentially applicable to quick positioning with high accuracy.


1994 ◽  
Vol 48 (12) ◽  
pp. 1529-1531 ◽  
Author(s):  
Jiaying Ma ◽  
Ying-Sing Li

A Raman probe was set up with optical fibers and a graded refractive index (GRIN) lens. It was found that the Raman background arising from optical fiber was spatially dependent, while normal Raman (NR) scattering, surface-enhanced Raman scattering (SERS), and surface-enhanced resonance Raman scattering (SERRS) were spatially independent. Spatial optimization was carried out to minimize the background interference of the optical fiber Raman probe with the use of benzoic acid as a test sample. The best configuration of the probe could also be applied to both SERS and SERRS. SER spectra of p-nitrophenol (1.0 × 10−3 M) and SERR spectra of methyl red (1.0 × 10−6 M) were obtained with the use of this probe to check its performance.


Sign in / Sign up

Export Citation Format

Share Document