Effect of Process Parameters on Aerosol Jet Printing of Multi-Layer Circuitry

Author(s):  
Pradeep Lall ◽  
Kartik Goyal ◽  
Nakul Kothari ◽  
Ben Leever ◽  
Scott Miller

Abstract Printing technologies such as Aerosol Jet provides the freedom of miniaturizing interconnects and producing fine pitch components. Aerosol Jet, a direct printing technique replaces the traditional steps of manufacturing a printed circuit board such as lithography or etching, which are quite expensive, and further allowing the circuits to be fabricated onto all kinds of substrates. Wide impact areas range from healthcare to wearables to future automotive applications. The aerosol jet printer from Optomec utilized in this study, consists of two types of atomizers depending on ink viscosity. One is Ultrasonic Atomizer which supports ink with viscosity range of 1–5cP, and another is Pneumatic Atomizer with large range of suitable viscosity 1–1000cP. This paper focuses on utilizing the aerosol jet printing using both the atomizers to develop process parameters to be able to successfully print bi-material, multi-layer circuitry. The insulating material between two conductive lines used in the paper is of very high viscosity of 350cP, suitable for Pneumatic atomizer and Silver Nano-particle ink with the viscosity suitable for Ultrasonic atomizer as a conductive ink. A statistical modeling approach is presented to predict the attributes such as micro-via diameter before starting the print process, enabling us to pre-adjust the dimensions in CAD for the desired output. Process parameters to obtain a fine print with good electrical properties and better dimensional accuracy are developed. Importance of pre-cleaning the substrate is discussed, in addition to the printing process efficiency gauged as a function of process capability index and process capability ratio.

2020 ◽  
Vol 142 (4) ◽  
Author(s):  
Pradeep Lall ◽  
Kartik Goyal ◽  
Nakul Kothari ◽  
Benjamin Leever ◽  
Scott Miller

Abstract Printing technologies, such as aerosol-jet, open possibilities of miniaturizing interconnects and designing circuits on nonplanar surfaces. Aerosol-jet is a direct-printing technique that provides an alternative manufacturing option to traditional subtractive methods that entail lithography or etching. Additionally, the aerosol-jet technique allows the circuits fabrication using noncontact method. Wide impact areas range from healthcare to wearables to future automotive applications. The aerosol-jet printer from Optomec utilized in this study consists of two types of atomizers, depending on ink viscosity. The ultrasonic atomizer, supports ink with a viscosity range of 1–5 cP, and the pneumatic atomizer that has a larger range of 1–1000 cP. This paper focuses on utilizing the aerosol-jet technique, using both atomizers to develop process parameters, in order to successfully print bimaterial, multilayer circuitry. The insulating material between two conductive lines used in the paper is of very high viscosity of 350 cP, which is suitable for the pneumatic atomizer and silver nanoparticle ink with comparatively low viscosity of 30 cP for the ultrasonic atomizer as a conductive ink. This paper also presents a statistical modeling approach that predicts line attributes, including microvia-diameter, before starting the print process, enabling us to pre-adjust the dimensions in computer-aided design for the desired output. Process parameters can obtain a fine print with satisfactory electrical properties, which develops improved dimensional accuracy. The importance of precleaning the substrate in addition to the printing process efficiency gaged as a function of process capability index and process capability ratio is also presented.


2020 ◽  
Vol 142 (4) ◽  
Author(s):  
Pradeep Lall ◽  
Amrit Abrol ◽  
Nakul Kothari ◽  
Benjamin Leever ◽  
Scott Miller

Abstract Traditionally, printed circuit assemblies have been fabricated through a combination of imaging and plating-based subtractive processes involving the use of photo-exposure followed by baths for plating and etching in order to form the necessary circuitry on rigid and flexible laminates. The emergence of a number of additive technologies presents an opportunity for the development of processes for manufacturing of flexible substrates by utilizing mainstream additive processes. Aerosol-jet printing is capable of printing lines and spaces below 10 μm in width. The aerosol-jet system also supports a wide variety of materials, including nanoparticle inks, screen-printing pastes, conductive polymers, insulators, adhesives, and biological matter. The adoption of additive manufacturing for high-volume commercial fabrication requires an understanding of the print consistency and electrical mechanical properties. Little literature that addresses the effect of varying sintering time and temperature on the shear strength and resistivity of the printed lines exists. In this study, the effect of process parameters on the resultant line consistency and mechanical and electrical properties has been studied. Print process parameters studied include sheath rate, mass flow rate, nozzle size, substrate temperature, and chiller temperature. Properties include resistance and shear load to failure of the printed electrical line as a function of varying sintering time and temperature. The aerosol-jet machine has been used to print interconnects. Printed samples have been exposed to different sintering times and temperatures. The resistance and shear load to failure of the printed lines have been measured. The underlying physics of the resultant trend was then investigated using elemental analysis and scanning electron microscopy. The effect of line consistency drift over prolonged runtimes has been measured for up to 10 h of runtime. The printing process efficiency has been gaged as a function of the process capability index (Cpk) and process capability ratio (Cp). Printed samples were studied offline utilizing optical profilometry in order to analyze the consistency within the line width, height, and resistance, and shear load to study the variance in electrical and mechanical properties over time.


Author(s):  
Pradeep Lall ◽  
Amrit Abrol ◽  
Nakul Kothari ◽  
Ben Leever ◽  
Scott Miller

Abstract Traditionally, the printed circuit assemblies have been fabricated through a combination of imaging and plating based subtractive processes involving use of photo-exposure followed by baths for plating and etching to form the needed circuitry on rigid and flexible laminates. Additive electronics is finding applications for fabrication of IoT sensors. The emergence of a number of additive technologies poses an opportunity for the development of processes for manufacture of flexible substrates using mainstream additive processes, which are now commercially available. Aerosol-Jet printing has shown the capability for printing lines and spaces below 10 μm in width. The Aerosol-Jet system supports a wide variety of materials, including nanoparticle inks and screen-printing pastes, conductive polymers, insulators, adhesives, and even biological matter. The adoption of additive manufacturing for high-volume commercial fabrication requires an understanding of the print consistency, electrical and mechanical properties. Little literature exists that addresses the effect of varying sintering time and temperature on the shear strength and resistivity of the printed lines. In this study, the effect of process parameters on the resultant line-consistency, mechanical and electrical properties has been studied. Print process parameters studied include the sheath rate, mass flow rate, nozzle size, substrate temperature and chiller temperature. Properties include resistance and shear load to failure of the printed electrical line as a function of varying sintering time and varying sintering temperature. Aerosol-Jet machine has been used to print interconnects. Printed samples have been exposed to different sintering times and temperatures. The resistance and shear load to failure of the printed lines has been measured. The underlying physics of the resultant trend was then investigated using elemental analysis and SEM. The effect of line-consistency driftover prolonged runtimes has been measured for up to 10-hours of runtime. Printing process efficiency has been gauged a function of process capability index (Cpk) and process capability ratio (Cp). Printed samples were studied offline using optical Profilometry to analyze the consistency within the line width, line height, line resistance and shear load to study the variance in the electrical and mechanical properties over time.


2009 ◽  
Vol 53 (5) ◽  
pp. 050304 ◽  
Author(s):  
Wen-Kai Hsiao ◽  
Stephen D. Hoath ◽  
Graham D. Martin ◽  
Ian M. Hutchings

2014 ◽  
Vol 931-932 ◽  
pp. 90-94 ◽  
Author(s):  
Rapeephun Dangtungee ◽  
Suchart Siengchin ◽  
Chaisiri Kitpaosong

This research was aimed to study and develop a method for recycle epoxy resin from waste printed circuit board by hot solvent methods and DMSO/NaOH catalytic extraction method. It was found that the pressure tank system, sub set of hot solvent method, variable as following; pressure of 15 bar, temperature of 80 °C, reaction time for 6 h and ethyl acetate solvent presented maximum yield 50.46 %, while DMSO/NaOH catalytic system at 145 °C for 5 h was found maximum yield of 42.97 %. Recycled epoxy resin, the final product from hot solvent and DMSO/NaOH catalytic were showed similarly clear orange-yellow high viscosity. Comparatively, DMSO/NaOH system showed slightly darker color than that of hot solvent system. Functional group at 3000-2850, 1480-1540 and 1020-1040 cm-1, characterized from Fourier transform infrared spectroscopy (FT-IR), indicated that the both product were alkane, aromatic, and phenyl-O-C group, respectively. It could be confirmed that the beneficial functional group of recycled epoxy resin was appeared as a new epoxy resin.


2020 ◽  
Vol 32 (4) ◽  
pp. 191-199
Author(s):  
Przemysław Ptak ◽  
Krzysztof Górecki ◽  
Agata Skwarek ◽  
Krzysztof Witek ◽  
Jacek Tarasiuk

Purpose This paper aims to present the results of investigations that show the influence of soldering process parameters on the optical and thermal parameters of power LEDs. Design/methodology/approach The power LEDs were soldered onto metal core printed circuit board (MCPCB) substrates in different soldering ovens: batch and tunnel types, characterized by different thermal profiles. Three types of solder pastes based on Sn99Ag0.3Cu0.7 with the addition of TiO2 were used. The thermal and optical parameters of the diodes were measured using classical indirect electrical methods. The results of measurements obtained were compared and discussed. Findings It was shown that the type of oven and soldering thermal profile considerably influence the effectiveness of the removal of heat generated in the LEDs tested. This influence is characterized by thermal resistance changes. The differences between the values of this parameter can exceed 20%. This value also depends on the composition of the soldering paste. The differences between the diodes tested can exceed 15%. It was also shown that the luminous flux emitted by the diode depends on the soldering process used. Practical implications The results obtained could be useful for process design engineers for assembling power LEDs for MCPCBs and for designers of solid-state light sources. Originality/value This paper presents the results of investigations into the influence of the soldering profiles and soldering pastes used on the effectiveness of the removal of heat generated in power LEDs. It shows and discusses how the factors mentioned above influence the thermal resistance of the LEDs and optical parameters that characterize the light emitted.


2010 ◽  
Vol 450 ◽  
pp. 9-12
Author(s):  
S.D.T. Weller ◽  
I.P. Jones ◽  
Ian M. Fox ◽  
Terry Hirst

The solderability and reliability of SnAgCu and SnAgCuSbBiNi lead-free solders were assessed against SnPbAg solder on a range of PCB finishes. A novel solderability test has been developed to assess the solder system’s ability to realign when a deliberately inaccurate solder stencil printing process was applied. This has shown to be an excellent way to compare PCB finishes and solders, as well as define process parameters. Electroless Nickel Immersion Gold (ENIG) finish proved to give the best solderability and the optimum process parameters were also found. SnPbAg solder has shown superior thermal cycling performance compared to SnAgCu.


Author(s):  
Yean-Der Kuan ◽  
Chia-Hao Chang

The printed circuit board (PCB)-based direct methanol fuel cell (DMFC) package is a novel manufacturing and assembly process, which is full potential in mass production, and very limited literatures make study on the effects of the related process parameters. The hot press is a necessary and key process to make the PCB package, i.e., the key component of a DMFC, membrane electrode assemblies (MEA), needs to sustain a severe test. In order to minimize the process-induced damage of the MEAs, it is important to make a good control on the process parameters. Therefore, the objective of this paper is to present a methodology to explore a good combination of hot-press parameters. The considered parameters include the compression ratio of the MEA, heating time, heating temperature, and hot pressing pressure acting on the MEA. During the experimental investigation, a series of experiments was made first to discuss the effect of the individual parameter of the hot-press process on the MEA performance, wherein a reasonable range of each process parameter condition was able to be well defined. Moreover, the Taguchi experimental method was adopted to explore the parameter effects on the DMFC performance during the digital packaging process and to determine the best combination of parameter conditions. At the end, a MEA was made a hot press under the best parameter combination, which could verify the result obtained from Taguchi’s experiments. The result is able to be an important reference for the future manufacturing design guideline of PCB-based DMFC package.


2013 ◽  
Vol 2013 (1) ◽  
pp. 000921-000926 ◽  
Author(s):  
John Bolger ◽  
Leon Lantz ◽  
Rich Lewis ◽  
Rick Trudeau ◽  
Daniel Hines

Additive manufacturing methods hold several advantages over standard semiconductor fabrication techniques such as the reduction of hazardous waste, the reduction of fabrication steps and the elimination of mask sets. For prototyping, low volume manufacturing and custom parts, additive manufacturing has the potential to dramatically reduce both the time and cost of fabrication. As a demonstration of the capabilities of additive manufacturing, a ‘2-layer’ power supply circuit board was fabricated using aerosol-jet printing. Silver nanoparticle ink was used to print the conducting layers and polyimide was used to print the dielectric layer. Each layer was printed separately and sintered/cured for at least 90 minutes up to a temperature of 255 °C. For an initial proof of concept, a power supply circuit was selected, providing three different voltage outputs. In order to supply the necessary current while minimizing topology, the metal traces were designed to be as wide as possible while staying within a 16 × 20 mm footprint. Additionally, an “inverse via” scheme was utilized in which the dielectric layer was printed only where layer-to-layer isolation was needed. This minimized the amount of material used and eliminated the need to include standard vias into the design. Once printed, a 2-layer circuit board was populated by using standard pick-and-place techniques and a conductive adhesive to attach components in place. Built up boards were tested for functionality at room temperature, thermally cycled from 10 to 80 °C for 63 cycles and subjected to high temperature operational life testing at 70 °C for 96 hours. Design criteria, fabrication methods and test results will be presented in detail.


Sign in / Sign up

Export Citation Format

Share Document