Safe Separation Distances: Natural Gas Transmission Pipeline Incidents

Author(s):  
Eugene Golub ◽  
Joshua Greenfeld ◽  
Robert Dresnack ◽  
F. H. Griffis ◽  
Louis Pignataro

The paper discusses a methodology to define safety implications of and damages that have resulted from gas transmission pipeline failures where fire and/or explosions have occurred. The records of the National Transportation Safety Board were examined to determine the area that was burned and/or impacted by a resulting explosion. The impacted area was then correlated with the physical parameters of the pipeline to see if a relationship existed. The parameters considered included the pipe diameter, the operating pressure at the point of release, the volume of material released, the maximum radius burned by the fire, the height of the flame and the maximum distance effected by the resulting explosion (if one occurred). Two strong correlations were found between the operating pressure in the pipe and the area burned in the incident for the two cases, with and without an explosion taking place. These results may be used to define a safe separation distance for a natural gas transmission pipeline.

Author(s):  
David Cheng

Abstract Data from the DCS systems provides important information about the performance and transportation efficiency of a gas pipeline with compressor stations. The pipeline performance data provides correction factors for compressors as part of the operation optimization of natural gas transmission pipelines. This paper presents methods, procedure, and a real life example of model validation based performance analysis of gas pipeline. Statistic methods are demonstrated with real gas pipeline measurement data. The methods offer practical ways to validate the pipeline hydraulics model using the DCS data. The validated models are then used as performance analysis tools in evaluating the fundamental physical parameters and assessing the pipeline hydraulics conditions for potential issues influencing pressure drops in the pipeline such as corrosion (ID change), roughness changes, or BSW deposition.


Author(s):  
Danielle Demers ◽  
Arti Bhatia

Alliance Pipeline (Alliance), an integrated Canadian and U.S. high-pressure, high-energy natural gas transmission pipeline system, is committed to the development and application of best practices for the full lifecycle of its pipeline system. Currently, there are several publications which individually set out minimum pipeline separation requirements, and discuss considerations for establishing an appropriate separation distance between adjacent pipelines or other buried structures sharing the same right-of-way (RoW). Alliance has reviewed these existing publications, and has consolidated the requirements, guidance, and best practices discussed therein for application in its own company practices. This paper summarizes the review and consolidation of these requirements, guidance, and best practices.


Author(s):  
Michael R. Acton ◽  
Neil W. Jackson ◽  
Eric E. R. Jager

Due to the increasing demand for natural gas in many locations, there is often a need to increase the capacity of existing and future gas transmission pipeline networks. In some situations, there may be a possibility of increasing the operating pressure (e.g. uprating), but in others there may be no alternative but to lay new pipelines, often along the same route as an existing pipeline. If one pipeline fails in this situation, it is possible that a second parallel pipeline may also fail as a result. However, there is also increasing pressure on the use of land and therefore the minimum separations with which pipelines may be laid and operated safely when in parallel to other pipelines need to be considered. This paper describes work carried out as a collaborative project supported by gas transmission pipeline operators to provide guidance on the likelihood of failure of a pipeline, for a range of different conditions, following failure of an adjacent pipeline. A framework has been developed that identifies the sequence of events that could lead to failure of a parallel pipeline, including the possibility of escalation from a leak (or puncture) to a full bore rupture. Work has been carried out including large scale experiments and CFD (Computational Fluid Dynamics) modelling to enable the critical processes in the framework to be quantified. This methodology has been used to produce general guidelines for parallel pipeline assessments, in order to support the design of new parallel pipeline installations. The methodology has been developed specifically for parallel natural gas transmission pipelines. However, the principles are relevant to parallel pipelines transporting other substances, and consideration is given to how the methodology may be adapted for such circumstances. The methodology provides input to any risk assessments of parallel pipeline installations, to quantify the possible contribution to the failure frequency from escalation. General guidance developed using the methodology presented in this paper, has recently been included in the recommendations for steel transmission pipelines, IGEM/TD/1 (Edition 5), published by the Institution of Gas Engineers and Managers. However, where general recommendations are not achievable, the methodology may be applied to take site and pipeline-specific factors into account.


Author(s):  
David Cheng

Abstract Data from the distributed control system (DCS) or supervisory control and data acquisition (SCADA) system provide useful information critical to the evaluation of the performance and transportation efficiency of a gas pipeline system with compressor stations. The pipeline performance data provide correction factors for compressors as part of the operation optimization of natural gas transmission pipelines. This paper presents methods, procedures, and an example of model validation-based performance analysis of a gas pipeline based on actual system operational data. An analysis approach based on statistical methods is demonstrated with actual DCS gas pipeline measurement data. These methods offer practical ways to validate the pipeline hydraulics model using the DCS data. The validated models are then used as performance analysis tools in assessing the pipeline hydraulics parameters that influence the pressure drop in the pipeline such as corrosion (inside diameter change), roughness changes, or basic sediment and water deposition.


Author(s):  
Guodong Zhang ◽  
Xuejun Bai ◽  
Douglas Stalheim ◽  
Shaopo Li ◽  
Wenhua Ding

Along with the increasing demand of oil and natural gas by various world economies, the operating pressure of the pipeline is also increasing. Large diameter heavy wall X80 pipeline steel is widely used in the long distance high pressure oil and gas transportation in China today. In addition, development of X90/X100 has begun in earnest to support the growing energy needs of China. With the wide use of X80 steels, the production technology of this grade has become technically mature in the industry. Shougang Group Qinhuangdao Shouqin Metal Materials Co., Ltd. (SQS) since 2008 has been steadily developing heavier thicknesses and wider plate widths over the years. This development has resulted in stable mass production of X80 pipeline steel plate in heavy wall thicknesses for larger pipe OD applications. The technical specifications of X80 heavy wall thickness and X90/X100 14.8–19.6 mm wall thicknesses, large OD (48″) requiring wide steel plates for the 3rd West-to-East Natural Gas Transmission Pipeline Project and the third line of Kazakhstan-China Main Gas Pipeline (The Middle Asia C Line) and the demonstration X90/X100 line (part of the 3rd West-East Project) in China required changes to the SQS plate mill process design. Considering the technology capability of steelmaking and the plate mill in SQS, a TMCP+OCP (Optimized Cooling Process) was developed to achieve stable X80 and X90/X100 mechanical properties in the steel plates while reducing alloy content. This paper will describe the chemistry, rolling process, microstructure and mechanical properties of X80 pipeline steel plates produced by SQS for 52,000 mT of for the 3rd West-to-East Natural Gas Transmission Pipeline Project and 5,000 mT for the Middle Asia C Line Project along with 1000 tons of 16.3 mm X90/X100 for the 3rd West-East demonstration pipeline. The importance of the slab reheating process and rolling schedule will be discussed in the paper. In addition, the per pass reductions logic used during recrystallized rough rolling, and special emphasis on the reduction of the final roughing pass prior to the intermediate holding (transfer bar) resulting in a fine uniform prior austenite microstructure will be discussed. The optimized cooling (two phase cooling) application after finish rolling guarantees the steady control of the final bainitic microstructure with optimum MA phase for both grades. The plates produced by this process achieved good surface quality, had excellent flatness and mechanical properties. The pipes were produced via the JCOE pipe production process and had favorable forming properties and good weldability. Plate mechanical properties successfully transferred into the required final pipe mechanical properties. The paper will show that the TMCP+OCP produced X80 heavy wall and 16.3 mm X90 wide plates completely meet the technical requirements of the three pipeline projects.


Author(s):  
Hiroyuki Makino ◽  
Yoshiaki Kawaguchi ◽  
Yoichiro Matsumoto ◽  
Shu Takagi ◽  
Shinobu Yoshimura

In this paper, the propagating shear fracture in natural gas transmission pipelines is simulated by an interactive method between gas decompression and crack propagation. A rich gas which contains heavier hydrocarbons than methane is highlighted and the relation between the crack velocity and the distance is simulated for varied condition of pipelines. The results of simulation are shown in the relation between the fracture arrest distance and the toughness of the pipes used, and the effects of the difference in gas compositions, increase of the operating pressure and the change of the initial gas temperature are discussed. The results of the simulation make it clear that the rich gas increases the risk for long running fracture, the simple increase of the operating pressure by increasing the design factor causes long crack propagation, increase of the operating pressure by using higher grade pipes not always invites long crack propagation and lower temperature increases the fracture arrest distance in relatively lower pressure but decreases the distance in relatively higher pressure. All the discussion in this study indicates that the analysis of the decompression behavior of the inner gas is essential for the interpretation of the phenomenon of the propagating shear fracture in pipelines. It is concluded that the fluid characteristics of the gas transmitted and material characteristics of the pipes used should be matched appropriately for the safety of the pipelines.


1978 ◽  
Author(s):  
T. E. Hajnal

Designers of natural gas transmission systems often have to make recommendations as to the type, size, and number of turbines to be purchased and installed either on new pipelines or on expanding existing systems. This paper describes the economic evaluation technique which is being used by TransCanada PipeLines, of selecting turbines for natural gas transmission pipeline systems. The technique is based on comparing the present worths of annual owning and operating costs associated with the turbines considered for installation.


Sign in / Sign up

Export Citation Format

Share Document