ph buffering capacity
Recently Published Documents


TOTAL DOCUMENTS

63
(FIVE YEARS 13)

H-INDEX

15
(FIVE YEARS 2)

Agronomy ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 2223
Author(s):  
Prisca Divra Johan ◽  
Osumanu Haruna Ahmed ◽  
Latifah Omar ◽  
Nur Aainaa Hasbullah

Soil-available P for crop use is limited because of fixation reaction and loss of organic matter through erosion and surface runoff. These factors cause an imbalance between inputs and outputs of P nutrients in acid soils. Several approaches to improve P availability have been proposed, however, little is known about the effectiveness of amending humid mineral acid soils with charcoal and sago bark ash on P dynamics. Thus, pH buffering capacity and leaching studies were conducted to determine: (i) pH buffering capacity upon application of charcoal and sago bark ash and (ii) the influence of charcoal and sago bark ash on P leaching in acid soils. pH buffering capacity was calculated as the negative reciprocal of the slope of the linear regression (pH versus acid addition rate). A leaching study was carried out by spraying distilled water to each container with soil such that leachates through leaching were collected for analysis. The ascending order of the treatments based on their pH buffering capacity and regression coefficient (R2) were soil alone (0.25 mol H+ kg−1 sample), soil with charcoal (0.26 mol H+ kg−1 sample), soil with sago bark ash (0.28 mol H+ kg−1 sample), charcoal alone (0.29 mol H+ kg−1 sample), soil with charcoal and sago bark ash (0.29 mol H+ kg−1 sample), and sago bark ash alone (0.34 mol H+ kg−1 sample). Improvement in the soil pH buffering capacity was partly related to the inherent K, Ca, Mg, and Na contents of charcoal and sago bark ash. In the leaching study, it was noticed that as the rate of sago bark ash decreased, the pH of leachate decreased, suggesting that unlike charcoal the sago bark ash has significant impact on the alkalinity of leachate. Soil exchangeable acidity, Al3+, and H+ reduced significantly following co-application of charcoal and sago bark ash with ERP. This could be attributed to the neutralizing effects of sago bark ash and the high affinity of charcoal for Al and Fe ions. The amount of P leached from the soil with 100% charcoal was lower because charcoal has the ability to capture and hold P-rich water. The findings of this present study suggest that combined use of charcoal and sago bark ash have the potential to mitigate soil acidity and Al toxicity besides improving soil pH buffering capacity and minimizing P leaching. A field trial to consolidate the findings of this work is recommended.


2021 ◽  
Vol 42 (6supl2) ◽  
pp. 3793-3802
Author(s):  
Marina Juliani Baumhak ◽  
◽  
Lilian Emy dos Santos Michima ◽  
Beatriz Moreira Andrioli ◽  
Roberta Ariboni Brandi ◽  
...  

This study set out to determine the impacts of a commercial equine enteral nutrition product on fecal pH, buffering capacity (BC) and physical examination variables. Eight healthy horses were randomly allocated to one of two simultaneous experimental groups in a 4×4 Latin square design. Horses were submitted to 12 hours of solid fasting, then fed increasing doses of the test product via nasogastric tube, as follows: 0% (pure water), 50%, 75% and 100% of the daily recommended dose. Test product doses were diluted in water (1:3) and delivered by bolus feeding. Fecal samples were taken directly from the rectal ampulla prior to (T0) and within 3, 6, 12, 24, 36 and 48 hours of product administration (T3, T6, T12, T24, T36 and T48 respectively). Within 24 to 36 hours of product administration, fecal pH was near 6 (p = 0.01). However, dose variation had no effect on pH. Product dose and sample collection time had a significant impact (p = 0.00) on buffering capacity at pH 6. The more dramatic drop in pH occurred within 24 to 36 hours of product administration, except in horses receiving the 0% dose (water). At pH 5, buffering capacity was affected by dose but not by sample collection time. Soft fecal consistency, increased intestinal motility and fat droplets in fecal samples were noted in most horses. Fecal pH and buffering capacity assessment are indirect tests. Still, results obtained from these tests were deemed useful for detection of intestinal changes, particularly when combined with physical examination. The product had an impact on faecal pH, buffering capacity and intestinal motility, therefore, it is recommended that the formulation be revised.


Author(s):  
Zawawi Ibrahim ◽  
Aisyah Humaira Alias ◽  
Ridzuan Ramli ◽  
Noorshamsiana Abdul Wahab ◽  
Mansur Ahmad ◽  
...  

Studies on the manufacture of medium density fiberboard (MDF) from oil palm frond (OPF) fibre were conducted to provide a sustainable and feasible source of lignocellulosic materials. The quality and properties of the fibre are very important as it dictates the final MDF properties. The properties of fibre like fibre pH, buffering capacity, and morphology can influence most of the MDF performances. Refining condition is one of the most important factors which determine the properties of the refined fibre. In this study, the effects of different refining pressures and temperatures on OPF fibre were evaluated. The refining of OPF fibre was observed at four levels of refining parameters; which were categorized as low (2 bar at 130 °C), medium (4 bar at 150 °C), high (6 bar at 170 °C), and severe (8 bar at 190 °C). The refining heating time of 5 minutes was employed. The pH, buffering capacity, morphology, and the surface of the fibres were evaluated. The refined fibres were used to manufacture fibreboard panels at a target density of 720 kg/m3 and 12% urea formaldehyde (UF) resin. The panel's physical (thickness swelling) and mechanical properties (bending and internal bonding strength) were then evaluated according to European Standard (EN 622-5, 2006). The results indicated that refining conditions affected the properties of the fibres and final boards. High steam pressure and temperature-induced pH changes in OPF fibres, leading to more acidic fibres and greater acid buffering capacity. The fibre separation was more adequate at this level and produced fibre with a smooth surface. Based on the test results for fibreboard properties, high steam pressure and temperature produced better dimensional stability of panels and bending and bonding strength. However, at the highest refining condition (severe level), the board performances began to deteriorate. The best performances of the samples were found for the panels made under refining conditions of 6 bar at 170 °C.


Horticulturae ◽  
2021 ◽  
Vol 7 (4) ◽  
pp. 74
Author(s):  
Michael Schreiber ◽  
Gerardo Nunez

Blueberry (Vacciniumcorymbosum interspecific hybrids) production in soilless substrates is becoming increasingly popular. Soilless substrates have low pH buffering capacity. Blueberry plants preferentially take up ammonium, which acidifies the rhizosphere. Consequently, soilless substrates where blueberry plants are grown exhibit a tendency to get acidified over time. Agricultural lime (CaCO3) is commonly used to raise soil and substrate pH in other crops, but it is rarely used in blueberry cultivation. We hypothesized that substrate amendment with low rates of agricultural lime increases substrate pH buffering capacity and provides nutritional cations that can benefit blueberry plants. We tested this hypothesis in a greenhouse experiment with ‘Emerald’ southern highbush blueberry plants grown in rhizoboxes filled with a 3:1 mix of coconut coir and perlite. We found that substrate amendment with CaCO3 did not cause high pH stress. This amendment maintained substrate pH between 5.5 and 6.5 and provided Ca and Mg for plant uptake. When blueberry plants were grown in CaCO3-amended substrate and fertigated with low pH nutrient solution (pH 4.5), they exhibited greater biomass accumulation than plants grown in unamended substrates. These results suggest that low rates of CaCO3 could be useful for blueberry cultivation in soilless substrates.


Agronomy ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 379
Author(s):  
Perumal Palanivell ◽  
Osumanu Haruna Ahmed ◽  
Latifah Omar ◽  
Nik Muhamad Abdul Majid

The physical and chemical properties of clinoptilolite zeolite can be used to enhance soil nutrient availability for optimum crop use. Amending nitrogen, phosphorus, and potassium fertilizers with clinoptilolite zeolite could create a pool of negative charges to retain and release nutrients timely for crop use. Thus, we used clinoptilolite zeolite to enhance Typic Paleudults sorption (adsorption and desorption) of nitrogen, phosphorus, potassium, and this soil’s pH buffering capacity. The treatments evaluated were: (i) 250 g soil alone, (ii) 20 g clinoptilolite zeolite alone, (iii) 250 g soil + 20 g clinoptilolite zeolite, (iv) 250 g soil + 40 g clinoptilolite zeolite, and (v) 250 g soil + 60 g clinoptilolite zeolite. Clinoptilolite zeolite increased soil nitrogen and potassium adsorption, nitrogen desorption, and soil pH. Moreover, ability of the soil to resist drastic change in pH (pH buffering capacity) was improved. Additionally, phosphorus adsorption and desorption of phosphorus and potassium were reduced. Higher potassium adsorption with lower potassium desorption suggests that the clinoptilolite zeolite sorbs potassium effectively. The clinoptilolite zeolite nitrogen, phosphorus, and potassium contributed to the reduction in the adsorption these nutrients. The clinoptilolite zeolite improved nitrogen, phosphorus, and potassium availability and soil buffering capacity to prevent these nutrients from being fixed or lost through for example, leaching. Therefore, clinoptilolite zeolite application could contribute to improved use of nitrogen, phosphorus, and potassium fertilizers to prevent soil, air, and water pollution. Additionally, our intervention could improve nitrogen, phosphorus, and potassium use efficiency.


2020 ◽  
Vol 28 (3) ◽  
pp. 320-328
Author(s):  
Y. M. Olifir ◽  
A. J. Habryiel ◽  
T. V. Partyka ◽  
O. S. Havryshko

The increase in the carbon dioxide content in the atmosphere, which enhances the greenhouse effect and leads to climate change, is the fundamental scientific problem of nowadays. Modern approaches to fertility management technologies of acid soils based on the principles of resource conservation and environmental safety are presented. They are based on the results of the study of carbon dioxide emission intensity, humus status, and crop rotation productivity in a classic long-term agricultural experiment under the influence of long-term use of various fertilizer systems with the application of ameliorant doses calculated by pH buffering capacity and hydrolytic acidity. The organo-mineral fertilizer system with the addition of 10 t of manure per ha of crop rotation area + N65P68K68, liming with a CaCO3 dose calculated according to pH buffering capacity (2.5 t/ha) contributes most to the optimization of soil processes. At the same time, it ensures the rational use of fertilizers and ameliorants, preservation of fertility, optimizes the processes of humus formation and carbon dioxide release. A high level of productivity of Albic Stagnic Luvisols forms under these conditions – 7.38 t/ha of grain units. Application of 1.0 and 1.5 lime norms calculated according to soil hydrolytic acidity with organic-mineral and mineral fertilizer systems on Albic Stagnic Luvisols in a short four-field crop rotation is not only a high-cost measure. However, it causes significant carbon loss in the form of CO2 due to additional mineralization. It is accompanied by calcium leaching and creates environmental problems in the conditions of the periodic washing-off water regime. Therefore, liming by CaCO3 dose calculated according to acid-base buffering capacity should be carried out before each of the following rotations in order to harmonize the environmental and productive functions of Albic Stagnic Luvisols in the short crop rotation. The obtained research results will be used to improve the methodology for determining carbon dioxide emissions and predicting the effect of various fertilizer and liming systems on its balance in the soil.


2020 ◽  
Vol 10 (2) ◽  
pp. 19-24
Author(s):  
Bidhata Ojha ◽  
Radha Baral ◽  
Dipshikha Bajracharya

Background: Renal failure is a process that expresses a loss of functional capacity of the nephrons, independently of its etiology. Although acute renal failure is reversible in the majority of cases, chronic renal failure presents a progressive course towards terminal renal failure. Hemodialysis is the most widely used technique leading to systemic alterations, oral complications and variations in the flow and composition of the saliva. The purpose of this study was to estimate salivary pH, buffering capacity, flow rate in chronic renal failure patients undergoing hemodialysis with its oral manifestation and caries prevalence. Methods: Saliva samples were collected from 40 patients with chronic renal failure undergoing dialysis and 40 healthy subjects after taking the informed consent. Saliva samples were then taken to the lab for processing. Salivary pH, buffering capacity and flow rate was estimated. DMFT was calculated. The statistical analysis was done using SPSS version 23. Results: A statistically significant rise in salivary pH, buffering capacity with decrease in flow rate was noted in chronic renal failure patients undergoing dialysis compared to controls. Furthermore, decrease in DMFT value was noted in CRF group despite of poor oral hygiene of the patient. We could also observe different oral manifestations in CRF group among which uremic fetor being the commonest. Conclusions: Our report suggest that saliva is noninvasive tool which act as an adjunct in diagnos­ing oral lesions and manifestations in CRF patients whose oral hygiene is often neglected with their reluctance in long term dental appointment in the middle of regular hemodialysis schedule.


2019 ◽  
Vol 10 (1) ◽  
pp. 295
Author(s):  
Perumal Palanivell ◽  
Osumanu Haruna Ahmed ◽  
Omar Latifah ◽  
Nik Muhamad Abdul Majid

Adsorption and desorption of nitrogen (N), phosphorus (P), and potassium (K) soils are controlled by pH, pH buffering capacity, organic matter, and cation exchange capacity (CEC). These factors optimized to improve timely availability of N, P, and K crop use using organic amendments such as chicken litter biochar (CLB). The objective of this study was to determine the effects of CLB on N, P, K sorption and pH buffering capacity of an acid soil. Different rates of CLB were mixed with an acid soil for N, P, and K sorption and pH buffering capacity determination. The CLB increased soil pH and pH buffering capacity, but unlike P and K adsorption, the different rates of CLB significantly increased N adsorption, suggesting that this soil amendment has high affinity for N than P and K. Also, because CLB reduced N, P, and K desorption, it suggests that N in particular will be slowly released with time. The reduced N desorption but higher N adsorption further indicates that N can be temporary fixed by CLB. This work has revealed CLB is more effective controlling soil N availability for timely crop use to avoid losses.


Sign in / Sign up

Export Citation Format

Share Document