The First L555 (X80) Pipeline in Japan

Author(s):  
Yoshiyuki Matsuhiro ◽  
Noritake Oguchi ◽  
Toshio Kurumura ◽  
Masahiko Hamada ◽  
Nobuaki Takahashi ◽  
...  

The construction of the first L555(X80) pipeline in Japan was completed in autumn, 2011.In this paper, the overview of the design consideration of the line, technical points for linepipe material and for girth welds are presented. In recent years the use of high strength linepipe has substantially reduced the cost of pipeline installation for the transportation of natural gas. The grades up to L555(X80) have been used worldwide and higher ones, L690(X100) and L830(X120), e.g., are being studied intensively. In the areas with possible ground movement, the active seismic regions, e.g., pipeline is designed to tolerate the anticipated deformation in longitudinal direction. In Japan, where seismic events including liquefaction are not infrequent, the codes for pipeline are generally for the grades up to L450(X65). Tokyo Gas Co. had extensively investigated technical issues for L555(X80) in the region described above and performed many experiments including full-scale burst test, full-scale bending test, FE analysis on the girth weld, etc., when the company concluded the said grade as applicable and decided project-specific requirements for linepipe material and for girth weld. Sumitomo Metals, in charge of pipe manufacturing, to fulfill these requirements, especially the requirement of round-house type stress-strain (S-S) curve to be maintained after being heated by coating operation, which is critical to avoid the concentration of longitudinal deformation, developed and applied specially designed chemical composition and optimized TMCP (Thermo-Machanical Control Process) and supplied linepipe (24″OD,14.5∼18.9mmWT) with sufficient quality. It had also developed and supplied induction bends needed with the same grade. Girth welds were conducted by Sumitomo Metal Pipeline and Piping, Ltd and mechanized GMAW (Gas Metal Arc Welding) was selected to achieve the special requirements, i.e., the strength of weld metal to completely overmatch the pipe avoiding the concentration of longitudinal strain to the girth weld, and the hardness to be max.300HV10 avoiding HSC (Hydrogen Stress Cracking) on this portion. Both of RT (Radiographic Test) and UT (Ultrasonic Test) were carried out to all the girth welds. These were by JIS (Japan Industrial Standards) and the project-specific requirements.

Author(s):  
Martin W. Hukle ◽  
Dan B. Lillig ◽  
Brian D. Newbury ◽  
John Dwyer ◽  
Agnes Marie Horn

This paper reviews the specific testing methodologies implemented for the qualification of mechanized pulsed gas metal arc welding (PGMAW) procedures for strain based design applications. The qualified welding procedures were used during recent construction of an offshore pipeline subject to potential ice scour with an initial design target of 4% tensile strain capacity. This paper addresses the integrated development of linepipe specifications, large scale validation testing, weld procedure development, and finally, the verification of robustness through full scale pressurized testing of actual girth welds on project pipe material. The qualification sequence, from linepipe specification development through final full scale girth weld proof test is described.


Author(s):  
Xiaodong He ◽  
Yangqin Liu ◽  
Lixia Zhu ◽  
Ke Tong ◽  
Xiaodong Shao

The X80 girth welds were produced by solid-wire gas metal arc welding (GMAW) and shield metal arc welding (SMAW) using two welding consumables respectively, which contained different mass fraction of C, Mo and Ni. The tensile properties, notch toughness, hardness, and microstructures of welded joints were evaluated. The results indicate that high strength and good toughness of welded joints can be achieved. But the tensile properties of all weld metal of GMAW and SMAW process were evidently different because of the difference of mass fraction of C, Mo, Ni. The strength reduced slightly in softening zone of HAZ. Using welding consumable which contain higher Mo additions, the microstructure in weld seam and fusion zones were IAF+GB and GB+M respectively. Furthermore, the mechanical properties of X80 pipeline welded by single wire welding and double wire welding respectively have been compared. The double wire welds exhibited lower yield strength but higher toughness compared to the corresponding single wire welds.


2014 ◽  
Vol 936 ◽  
pp. 1747-1753
Author(s):  
Xiao Dong He ◽  
Ke Tong ◽  
Ming Hua Liang ◽  
Li Xia Zhu ◽  
Wei Ping Lin

The X80 girth welds were produced by solid-wire gas metal arc welding (GMAW) and shield metal arc welding (SMAW) using two welding consumables respectively, which contained different mass fraction of C, Mo and Ni. The tensile properties, notch toughness, hardness, and microstructures of welded joints were evaluated. The results indicate that high strength and good toughness of welded joints can be achieved. But the tensile properties of all weld metal of GMAW and SMAW process were evidently different because of the difference of mass fraction of C, Mo, Ni. The strength reduced slightly in softening zone of HAZ. Using welding consumable which contain higher Mo additions, the microstructure in filler weld and fusion zones were IAF+GB and GB+M respectively. Furthermore, the mechanical properties of X80 pipeline welded by single wire welding and double wire welding respectively have been compared. The double wire welds exhibited lower yield strength but higher toughness compared to the corresponding single wire welds.


Author(s):  
Ryuji Muraoka ◽  
Joe Kondo ◽  
Lingkang Ji ◽  
Hongyuan Chen ◽  
Yaorong Feng ◽  
...  

In order to achieve safety and reliability of long-distance gas transmission pipeline installed in seismic region while obtaining economical benefit by reducing material and construction cost, it is essential to apply the high-strength linepipes with sufficient strain capacity against buckling and weld fracture by seismic ground movement. At the same time, it is quite important to develop appropriate material requirement for strain capacity depending on the pipe dimension and strain demand of the region where the pipeline is installed. Grade X80 heavy gauge linepipes with excellent deformability were mass produced by applying advanced plate manufacturing technologies. These linepipes exhibit low Y/T and high uniform elongation in the longitudinal direction even after pipe coating. Strain capacity of the pipe against bending deformation with internal pressure was verified by conducting full scale pipe bending testing. In this paper, production results of high strain X80 linepipes for the application in long-distance pipelines in seismic region and full scale pipe bending and hydraulic burst test results were introduced.


Author(s):  
J. A. Gianetto ◽  
G. R. Goodall ◽  
W. R. Tyson ◽  
F. Fazeli ◽  
M. A. Quintana ◽  
...  

With an industry trend towards application of modern high strength steels for construction of large diameter, high pressure pipelines from remote northern regions there is a need to develop high-productivity welding processes to reduce costs and deal with short construction seasons. Achieving the required level of weld metal overmatching together with adequate ductility and good low temperature toughness is another major challenge for joining high strength X80/100 pipes. It is important to develop an improved understanding of weld metal systems that are required for the successful production of high strength pipeline girth welds that are needed for such demanding pipeline construction. In this investigation a range of weld metal (WM) compositions based on (i) C-Mn-Si-Mo, (ii) C-Mn-Si-Ni-Mo-Ti and (iii) C-Mn-Si-Ni-Cr-Mo-Ti was selected for more detailed evaluation of experimental plate welds complemented by specimens simulated by Gleeble® thermal cycling. Five specially-designed experimental plate welds were made with a robotic single torch pulsed gas metal arc welding (GMAW-P) procedures with wire electrodes applicable for joining X100 pipe. The procedures consisted of three initial fill passes deposited at 0.5 kJ/mm and a final deep-fill pass at 1.5 kJ/mm to just fill the narrow-gap joint. An important part of the research focused on development of WM Continuous Cooling Transformation (CCT) diagrams to establish the influence of composition and thermal cycle (cooling time) on formation of fine-scale, predominantly martensite, bainite and acicular ferrite (AF) microstructures. For the relatively wide range of cooling times investigated (Δt800−500 = 2 to 50 s), the lowest-alloyed WM (LA90) exhibited microstructures dominated by bainite with martensite to AF, whereas the highest-alloyed WM (PT02) formed large fractions of martensite with bainite to AF. Weld metal toughness was evaluated using both through-thickness notched 2/3 sub-size Charpy-V-notch (CVN) specimens as well as full-size surface-notched specimens. Post-test metallographic and fractographic examinations of selected fractured specimens were used to correlate WM microstructure and notch toughness.


Metals ◽  
2018 ◽  
Vol 8 (12) ◽  
pp. 1077 ◽  
Author(s):  
Seungmin Shin ◽  
Sehun Rhee

In this study, lap joint experiments were conducted using galvanized high-strength steel, SGAFH 590 FB 2.3 mmt, which was applied to automotive chassis components in the gas metal arc welding (GMAW) process. Zinc residues were confirmed using a semi-quantitative energy dispersive X-ray spectroscopy (EDS) analysis of the porosity in the weld. In addition, a tensile shear test was performed to evaluate the weldability. Furthermore, the effect of porosity defects, such as blowholes and pits generated in the weld, on the tensile shear strength was experimentally verified by comparing the porosity at the weld section of the tensile test specimen with that measured through radiographic testing.


2013 ◽  
Vol 746 ◽  
pp. 462-466
Author(s):  
Jin Hyun Koh ◽  
Bok Su Jang

The Ti addition effect on the characteristics of weld metal, such as impact energy, microstructure and nonmetallic inclusions, was investigated to develop a suitable gas metal arc welding wire for the high strength of TMCP (Thermo Mechanical Control Process)-600 steel. The fraction of acicular ferrite which was known to be a favorable weld metal microstructure for toughness was increased with Ti content from 0.002% to 0.025%, The impact energy of weld metal was increased whereas the ductile to brittle transition temperature was decreased with increasing Ti content. The size of nonmetallic inclusion was decreased while the density of inclusions was decreased with increasing Ti content. It was found that Ti content on the weld metal toughness had a plus effect by increasing the fraction of acicular ferrite in the weld metal microstructure.


2012 ◽  
Vol 710 ◽  
pp. 451-456
Author(s):  
Ravi Ranjan Kumar ◽  
P. K. Ghosh

Mechanical and fracture properties of 20MnMoNi55 grade high strength low alloy (HSLA) steel welds have been studied. The weld joints were made using Gas Tungsten Arc Welding (GTAW), Shielded Metal Arc Welding (SMAW) and Pulse Gas Metal Arc Welding (P-GMAW) methods on conventional V-groove (V-Groove) and Narrow groove (NG-13). The base metal and weld metal were characterised in terms of their metallurgical, mechanical and fracture toughness properties by following ASTM procedures. The J-Integral fracture test was carried out using compact tension C(T) specimen for base and weld metal. The fracture toughness and tensile properties of welds have been correlated with microstructure. In conventional V-groove welds prepared by P-GMAW shows the improvement in initiation fracture toughness (JIC) as compared to the weld prepared by SMAW. Similar improvements in tensile properties have also been observed. This is attributed to reduction in co-axial dendrite content due to lower heat input during P-GMAW process as compared to SMAW. In the narrow groove P-GMA weld prepared at f value of 0.15 has shown relative improvement of JIC as compared to that of the weld prepared by SMAW process.


Author(s):  
David J. Miles ◽  
Tim J. M. Bond ◽  
Raymond N. Burke ◽  
Ruben van Schalkwijk

A new technology for external rehabilitation of pipelines, known as XHab™, has been developed. This method involves wrapping multiple layers of ultra-high strength steel strip (UHSS) in a helical form continuously over an extended length of pipeline using a dedicated forming and wrapping machine. The reinforcement afforded by the strip can be used to bring a defective section of pipe (e.g. externally corroded or dented) back to its original allowable operating conditions, or even to increase the allowable operating pressure if the desired operating conditions exceed the original pipeline design limits. This paper describes the full scale burst testing and analysis of defective pipes which have been repaired using the XHab process. The full scale test sections are 30″ × 0.5″ API 5L X52 DSAW pipe and include the following specimens: • Bare pipe with no defects; • Bare pipe with single machined defect; • Wrapped pipe with single machined defect and designed reinforcement; • Wrapped pipe with single machined defect and insufficient reinforcement; • Wrapped pipe with interacting defect array and designed reinforcement. The above full scale burst tests are supplemented by FEA models using ABAQUS. The material models for the steel pipe, UHSS strip, defect patch material and strip adhesive are based on measured data from the batch tests and tuned against the control burst test results. The structural behavior in the individual metallic and non-metallic elements can therefore be examined more closely, particularly in the region of the defect and where the wrapped strip crosses seam and girth welds.


Sign in / Sign up

Export Citation Format

Share Document