The Design and Construction of the Chinipas Slope Pipeline Crossing

Author(s):  
Agostino Napolitano ◽  
Guido Guidotti ◽  
Andrea Marsili ◽  
Alessandro Fabbri ◽  
Marco Menichetti ◽  
...  

SAIPEM has been awarded the engineering, procurement and construction of “El Encino - Topolobampo” Natural Gas Pipeline Project in Mexico. The 30” pipeline begins in El Encino, in the state of Chihuahua, and terminates in Topolobampo, in the state of Sinaloa. It runs in a West-South West direction perpendicularly crossing the “Sierra Madre Occidental”, a mountain range characterized by uneven morphology with deep and narrow valleys and steep slopes. Near the village of Santa Matilde, before reaching the Chinipas River, the pipeline route has to overcome a 150 meters high steep slope on the left side of the valley of Chinipas. This slope features a sub vertical rocky cliff with a 55 meters drop in the upper section. A trenchless crossing of the slope was designed and executed to safely cross the steep slope by means of raise borer and tunnel. Since the area was nearly inaccessible, SAIPEM, for the first time in the design of a trenchless crossing of slopes, has performed the geomechanical study using a remote sensing process based on the Structure from Motion (SfM) technique for a three-dimensional reconstruction of the outcrop of the cliff. The activity has been carried out in collaboration with the Department of Earth, Life and Environmental Science of the University of Urbino. The results of the study led to the optimization of the trenchless geometry maintaining the raise bore into the competent rock avoiding frequent lithological variations critical during the drilling and identifying a suitable tunnel entrance location.

Author(s):  
Ilaria Trizio ◽  
Francesca Savini ◽  
Romolo Continenza ◽  
Alessandro Giannangeli ◽  
Alessio Marchetti ◽  
...  

This chapter illustrates the results of an experimentation carried out by a group of multidisciplinary researchers from the ITC-CNR of L'Aquila and of archaeologists and engineers from the University of L'Aquila. This research project is based on the analysis of architectural and archaeological artefacts (the state of conservation of the artefacts, seismic vulnerability, stratigraphic analysis, construction phases) using methods linked to innovative digital technologies such as digital photogrammetric restitution, based on structure from motion (SfM) algorithms and the generation of photorealistic textures. The innovative methodological approach specifically refers to the management of archaeological data concerning the state of conservation of structures, damages and to their seismic vulnerability in a 3D GIS environment, with particular attention to three-dimensional stratigraphic readings of the artefacts.


Author(s):  
N. N. Dzhandzhgava ◽  
A. B. Sugak ◽  
E. A. Filippova ◽  
L. A. Satanin ◽  
D. S. Kryuchko

Craniosynostosis is a premature closure of the skull sutures, manifested by deformation of the head requiring surgical treatment. An instrumental examination of the state of the cranial sutures is necessary for the differential diagnosis of craniosynostosis and benign positional deformities of the skull in infants. Traditionally, radiation methods, such as X-ray and computed tomography with three-dimensional reconstruction, are used for this purpose. Over the past two decades, we have accumulated a large amount of data on the high information content of the ultrasound method in assessing the state of the cranial sutures in children. Ultrasound examination is widely available, easy to perform, reproducible; it does not require sedation of the patient and does not carry radiation exposure, which is especially important when examining young children. A negative result of the study makes it possible to exclude the diagnosis of craniosynostosis, while the detection of suture fusion serves as an indication for referring the child to visit a surgeon and further examination. The ultrasound method should be more widely used as a screening method for detecting head deformity and suspicion of craniosynostosis in children of the first year of life.


2019 ◽  
Vol 21 (1) ◽  
pp. 5-14
Author(s):  
Ian S. EVANS

Mountain glaciation involves the erosion of cirques and troughs, which increase steep slopes but also produce gentle slopes in cirque floors and trough floors. This is expected to increase the variability of slope gradients at related altitudes. Taking a whole mountain range, its distributions of altitude and slope can be analysed to establish a signal of glacial modification. Frequency distributions of altitude (hypsometry) and gradient (clinometry) alone do not seem adequate. Taking these two variables together – hypsoclinometry, plotting slope gradient against altitude – is more promising. Frequency distributions of slope gradient at different altitudes are exemplified here for mountain ranges in British Columbia and Romania, together with altitudinal variations of steep or gentle slopes. Cirque headwalls give the clearest morphometric signature of glaciation. Steep (especially the steepest) slopes are concentrated at cirque altitudes, increasing mean, median, standard deviation (SD) and inter-quartile range (IQR) of gradients, especially above cirque floors. There is only a small increase in SD and IQR at cirque floor altitudes. Hypsometric maxima and increased proportions of gentle slopes at cirque floor altitudes are clear only in mountain ranges densely occupied by cirques. This relates to the small proportion of each cirque (about 28%) occupied by the floor. Concentrations of steep slope aspects in directions favoured by local glaciers provide further evidence of glacial modification. The most general morphometric effect of glaciation, however, is the increase in steep slopes at cirque headwall altitudes. Thus it is possible to rank mountain ranges by degree of glacial modification.


Author(s):  
Robert Glaeser ◽  
Thomas Bauer ◽  
David Grano

In transmission electron microscopy, the 3-dimensional structure of an object is usually obtained in one of two ways. For objects which can be included in one specimen, as for example with elements included in freeze- dried whole mounts and examined with a high voltage microscope, stereo pairs can be obtained which exhibit the 3-D structure of the element. For objects which can not be included in one specimen, the 3-D shape is obtained by reconstruction from serial sections. However, without stereo imagery, only detail which remains constant within the thickness of the section can be used in the reconstruction; consequently, the choice is between a low resolution reconstruction using a few thick sections and a better resolution reconstruction using many thin sections, generally a tedious chore. This paper describes an approach to 3-D reconstruction which uses stereo images of serial thick sections to reconstruct an object including detail which changes within the depth of an individual thick section.


Author(s):  
S. Cusack ◽  
J.-C. Jésior

Three-dimensional reconstruction techniques using electron microscopy have been principally developed for application to 2-D arrays (i.e. monolayers) of biological molecules and symmetrical single particles (e.g. helical viruses). However many biological molecules that crystallise form multilayered microcrystals which are unsuitable for study by either the standard methods of 3-D reconstruction or, because of their size, by X-ray crystallography. The grid sectioning technique enables a number of different projections of such microcrystals to be obtained in well defined directions (e.g. parallel to crystal axes) and poses the problem of how best these projections can be used to reconstruct the packing and shape of the molecules forming the microcrystal.Given sufficient projections there may be enough information to do a crystallographic reconstruction in Fourier space. We however have considered the situation where only a limited number of projections are available, as for example in the case of catalase platelets where three orthogonal and two diagonal projections have been obtained (Fig. 1).


Author(s):  
A.M. Jones ◽  
A. Max Fiskin

If the tilt of a specimen can be varied either by the strategy of observing identical particles orientated randomly or by use of a eucentric goniometer stage, three dimensional reconstruction procedures are available (l). If the specimens, such as small protein aggregates, lack periodicity, direct space methods compete favorably in ease of implementation with reconstruction by the Fourier (transform) space approach (2). Regardless of method, reconstruction is possible because useful specimen thicknesses are always much less than the depth of field in an electron microscope. Thus electron images record the amount of stain in columns of the object normal to the recording plates. For single particles, practical considerations dictate that the specimen be tilted precisely about a single axis. In so doing a reconstructed image is achieved serially from two-dimensional sections which in turn are generated by a series of back-to-front lines of projection data.


Author(s):  
Mark Ellisman ◽  
Maryann Martone ◽  
Gabriel Soto ◽  
Eleizer Masliah ◽  
David Hessler ◽  
...  

Structurally-oriented biologists examine cells, tissues, organelles and macromolecules in order to gain insight into cellular and molecular physiology by relating structure to function. The understanding of these structures can be greatly enhanced by the use of techniques for the visualization and quantitative analysis of three-dimensional structure. Three projects from current research activities will be presented in order to illustrate both the present capabilities of computer aided techniques as well as their limitations and future possibilities.The first project concerns the three-dimensional reconstruction of the neuritic plaques found in the brains of patients with Alzheimer's disease. We have developed a software package “Synu” for investigation of 3D data sets which has been used in conjunction with laser confocal light microscopy to study the structure of the neuritic plaque. Tissue sections of autopsy samples from patients with Alzheimer's disease were double-labeled for tau, a cytoskeletal marker for abnormal neurites, and synaptophysin, a marker of presynaptic terminals.


Author(s):  
N. H. Olson ◽  
T. S. Baker ◽  
Wu Bo Mu ◽  
J. E. Johnson ◽  
D. A. Hendry

Nudaurelia capensis β virus (NβV) is an RNA virus of the South African Pine Emperor moth, Nudaurelia cytherea capensis (Lepidoptera: Saturniidae). The NβV capsid is a T = 4 icosahedron that contains 60T = 240 subunits of the coat protein (Mr = 61,000). A three-dimensional reconstruction of the NβV capsid was previously computed from visions embedded in negative stain suspended over holes in a carbon film. We have re-examined the three-dimensional structure of NβV, using cryo-microscopy to examine the native, unstained structure of the virion and to provide a initial phasing model for high-resolution x-ray crystallographic studiesNβV was purified and prepared for cryo-microscopy as described. Micrographs were recorded ∼1 - 2 μm underfocus at a magnification of 49,000X with a total electron dose of about 1800 e-/nm2.


Author(s):  
Daniel Beniac ◽  
George Harauz

The structures of E. coli ribosomes have been extensively probed by electron microscopy of negatively stained and frozen hydrated preparations. Coupled with quantitative image analysis and three dimensional reconstruction, such approaches are worthwhile in defining size, shape, and quaternary organisation. The important question of how the nucleic acid and protein components are arranged with respect to each other remains difficult to answer, however. A microscopical technique that has been proposed to answer this query is electron spectroscopic imaging (ESI), in which scattered electrons with energy losses characteristic of inner shell ionisations are used to form specific elemental maps. Here, we report the use of image sorting and averaging techniques to determine the extent to which a phosphorus map of isolated ribosomal subunits can define the ribosomal RNA (rRNA) distribution within them.


Author(s):  
B. Carragher ◽  
M. Whittaker

Techniques for three-dimensional reconstruction of macromolecular complexes from electron micrographs have been successfully used for many years. These include methods which take advantage of the natural symmetry properties of the structure (for example helical or icosahedral) as well as those that use single axis or other tilting geometries to reconstruct from a set of projection images. These techniques have traditionally relied on a very experienced operator to manually perform the often numerous and time consuming steps required to obtain the final reconstruction. While the guidance and oversight of an experienced and critical operator will always be an essential component of these techniques, recent advances in computer technology, microprocessor controlled microscopes and the availability of high quality CCD cameras have provided the means to automate many of the individual steps.During the acquisition of data automation provides benefits not only in terms of convenience and time saving but also in circumstances where manual procedures limit the quality of the final reconstruction.


Sign in / Sign up

Export Citation Format

Share Document