Comparison Between Yield Strength Results Obtained From Methods Using Both Flattened and Non-Flattened Specimens

Author(s):  
Pratham Nayyar ◽  
Dimitris Dimopoulos ◽  
William Walsh

Abstract Tensile properties of API 5L large diameter pipes are typically determined with the use of full thickness flattened strap samples extracted in the transverse direction with respect to the longitudinal pipe axis (TPA) [1, 2, 3, 4]. It has been well established that the process of sample flattening has a significant influence on determination of the yield strength of the pipe [5, 6]. The flattening process is sensitive to a number of variables such as method of flattening, equipment used, number/sequence of strokes, and operators conducting the flattening. As a result, issues with repeatability are frequently encountered and despite several efforts, the industry lacks any type of official standard for universal use. Historically, the industry has been focused on ensuring that the actual strength of pipes was safely higher than the specified minimum. Recently, there has been interest to also establish an upper limit on pipe strength particularly in the longitudinal direction with respect to the pipe axis (LPA) in order to avoid under matching between pipe and girth weld properties. These new requirements create the need for enhanced process control to minimize the variation due to flattening. Samples obtained from longitudinally welded (SAWL) and helically welded (SAWH) seam Grade X70M line pipe of various nominal wall thickness to diameter (t/D) ratios were flattened using different procedures, measured for curvature, and tensile tested, all in controlled laboratory environments with minimized repeatability variation. Special attention was given to the definition and measurement of different types of curvatures observed through the range of different t/D ratios and effort was made to assess criteria for curvature measurement prior to testing. Additionally, non-flattened specimens were tensile tested using round bar and full ring expansion test methods, and a comparison between the results obtained from both flattened and non-flattened specimen methods was made. The sample transverse yield strength results confirmed the expected variation between samples flattened by different methods. In addition, a much greater variation was observed when comparing the yield strength results between flattened and non-flattened samples. Considerations of extending the use of non-flattened specimens as a production test and benefits or limitations associated with such practice are discussed.

Author(s):  
Steven Cooreman ◽  
Dennis Van Hoecke ◽  
Martin Liebeherr ◽  
Philippe Thibaux ◽  
Mary Yamaguti Enderlin

Line pipe manufacturers always have to verify the mechanical properties on pipe to make sure that the pipe meets the requirements specified by the standard and/or customer. This involves measurement of mechanical properties along the hoop direction. The most accurate way to do so is by performing a ring expansion test, which, however, requires dedicated tools. The two other methodologies consist of standard tensile tests on either non-flattened round bar samples or so called ‘flattened tensile samples’. Round bar samples have the disadvantage that only part of the pipe’s wall thickness is considered. Furthermore they can only be used in case of larger OD/t ratios. Tests on flattened samples, on the other hand, require a flattening operation, which induces additional plastic deformation. However, this flattening operation is not standardized. Moreover, it was observed that the mechanical properties — especially the yield strength — resulting from tensile tests on flattened samples largely depend on test parameters such as residual deflection, extensometer position, flattening procedure, etc. Most manufacturers prefer to test flattened samples, because sample preparation is straightforward and cheap. Moreover it only requires a standard tensile bench. An extensive FEA (Finite Element Analysis) study was launched to investigate the influence of those parameters on the measured yield strength. The applied FEA methodology consists of three steps. First the complete pipe forming process is modeled (in a simplified way). Next a pipe sample is flattened. Finally a tensile sample is cut from the flattened pipe sample and loaded in tension. The mechanical material behaviour is described by a combined kinematic-isotropic hardening model, which allows taking into account the Bauschinger effect. The results are also compared to simulations of ring expansion tests and tests on round bar samples. Next a dedicated experimental test campaign was performed to verify the results of FEA. Results of ring expansion tests are compared to results obtained on round bar samples and flattened tensile samples. The results of this study have shown that the applied methodology significantly affects the measured yield strength. Moreover tests on insufficiently flattened samples could considerably underestimate the actual yield strength on pipe. Finally some guidelines are provided to improve the reproducibility of the measured yield strength when using flattened samples.


Author(s):  
M. Rashid ◽  
S. Chen ◽  
L. E. Collins

Tensile testing on large diameter line pipe is generally done using strap samples obtained in the transverse to pipe axis (TPA) orientation of a pipe. The strap samples are then flattened and machined prior to testing. Although the standardized tensile testing is well documented, the variability in the reported TPA tensile properties of the same material tested within a lab or at different labs has always been an issue. Recent work conducted at EVRAZ NA research lab has identified flattening as the main source of the variability in reported yield strength (YS) values for line pipe. The lack of a standard procedure for flattening TPA strap samples is a major obstacle to obtaining consistent results. Therefore, the main objective of this current study was to establish a standardized flattening procedure for TPA strap samples. Both finite element analysis (FEA) and experimental approaches were adopted. Various flattening methods and fixtures were studied. Extensive flattening experiments were conducted on TPA samples from different line pipe products. Results showed that the spring back after flattening in a TPA sample is different for pipes with different gauge and grades. It was established that consistent flattening can be achieved using appropriate fixtures for differerent ranges of tubular products defined by grade, diameter and gauges. Evaluation of the flattening fixture designs and experimental results are discussed in this paper.


2013 ◽  
Vol 690-693 ◽  
pp. 2270-2274
Author(s):  
Qiu Rong Ma ◽  
Hong Da Chen ◽  
Yan Hua Li ◽  
He Li

Tensile and impact toughness test on X100 line pipe with different pre-strain at different aging temperature were conducted to study the effect of pre-strain and aging temperature on properties of X100 line pipe. The result shows that yield strength and tensile strength of X100 line pipe would increase significantly with the introduction of pre-strain, while the impact toughness would decrease significantly. Effect of strain aging on tensile properties of X100 line pipe are more significantly. The yield strength, and tensile strength would increase significantly with the introduction of strain aging both transversal and longitudinal direction.


Author(s):  
Tanja Schmidt ◽  
Thomas Haase ◽  
Christoph Bosch

The challenging environment appearing in recent and moreover future deep offshore explorations promoted the development of linepipe steel grades with reliable sour service resistance. Severe sour conditions such as the combination of elevated production temperature, increasing pipeline pressures and high stress loads initiated by modern laying methods or introduced during service are leading to increasing corrosion demands. Steel pipelines used for the transport of media containing wet Hydrogen Sulphide (H2S) are faced with the danger of the cracking phenomena HIC (Hydrogen Induced Cracking) and SSC (Sulphide Stress Cracking). To prove resistance to HIC and SSC, test specimens are typically tested according standardised test methods. The exposure of test specimens in a sour test solution to a H2S pressure of 1 bar for 96 h, as described in NACE TM0284 is used to prove HIC resistance. Commonly four-point bend testing as described in EFC publication no. 16 is performed for SSC resistance testing with the appliance of a specific load, typically 80% of the actual yield strength. Within this work HIC testing at test conditions representing higher H2S partial pressures (up to 5 bar) and longer test durations (up to 6 months) have been performed on seamless quenched and tempered line pipe steel of grade X65 and X70 produced by VALLOUREC & MANNESMANN TUBES by plug and continuous mandrel mill process. Beside material in as delivered condition also pre-strained material was tested. SSC four-point bend testing has been performed on specimens which were strained up to 10% of plastic strain in longitudinal direction.


Author(s):  
Dave G. Crone ◽  
Laurie E. Collins ◽  
Yankui Bian ◽  
Paul Weber

Tensile testing is a key part of the qualification process of Line Pipe. When qualifying pipe products various items are considered when tensile testing; Yield Strength (YS), Ultimate Tensile Strength (UTS), Percent Elongation (%EL), and the Yield Strength to Tensile Strength Ratio (Y/T) are all important. Of these, the YS is the most critical and yet the most sensitive to both preparation and measurement techniques. During the pipe forming process, the base material is plastically formed into a curved shape, and then welded into the final product. The Transverse to Pipe Axis (TPA) tensile specimen removed for testing is curved and must be flattened prior to testing. The flattening process is varied in many facilities and the standards to which testing is conducted are not specific enough to ensure uniformity of procedures. ASTM acknowledges flattening processes and the degree of flatness “may affect test results”, though no guidance is given. This paper will provide an overview of ongoing research efforts, concerning the measurement of the Yield Strength of TPA tensile specimens and its relationship to curvature and flattening methods, prior to testing. By comparing flattened strap tests, to round bar and ring expansion tests, it is shown that the flattened strap test provides a conservative estimate of the actual YS of the pipe.


Author(s):  
William Walsh ◽  
Sandeep Abotula ◽  
Bharath Konda

Abstract Ring expansion testing is one of the three accepted methods in API 5L for the measurement of yield strength for line pipe. The other two are flattened-strap tensile testing and round-bar tensile testing. A novel-concept ring expansion test machine has recently been commissioned which uses hydraulic pressure to clamp the top and bottom pressure-reacting plates rather than a traditional bolting arrangement. The benefit of hydraulic clamping is vastly reduced set-up times. This paper describes the design approach and the pitfalls that were overcome in commissioning the ring expansion test unit. Expansion measurements are taken using two different methods: a chain extensometer and an LVDT with a band wrapping the circumference of the pipe. Both approaches are used simultaneously to generate and compare two stress-strain curves for one pressure test. In addition, a 3-Point contact approach is developed to determine the hoop strain during pipe expansion. The 3-point contact approach is an attempt to infer the full hoop expansion behavior by measuring the radius change over a segment of the circumference. The device has two rollers which contact the pipe surface while a dial indicator midway between measures the radius change. As the pipe expands, the rollers maintain contact with the pipe surface while the dial indicator records the change in radius. Tests are performed on HFI, SAWL, and SAWH pipes ranging in outer diameter from 20-inch (508 mm) to 48-inch (1219 mm) and wall thicknesses from 0.375-inch (9.5 mm) to 0.969-inch (24.4 mm). The differences in the stress-strain behavior of these pipe forms are described and related to the residual-stress profiles generated by their respective manufacturing operations. The comparison to flattened-strap and round-bar tensile results are presented in a companion paper. The results of the 3-Point contact approach show that the radius change during early stages of expansion are not uniform around the pipe circumference and different patterns are observed in the HFI, SAWL, and SAWH pipe forms.


Author(s):  
Xiande Chen ◽  
Laurie Collins ◽  
Fathi Hamad ◽  
Dengqi Bai

During the development of high strength and high toughness spirally welded pipe with improved weld heat affected zone toughness, the evolution of the mechanical properties were studied by testing at different stages of the manufacturing process. The mechanical properties were measured in the as-welded condition after the spiral seam welding, after the hydrostatic test and after the aging cycle simulating the external pipe coating process. The tensile properties of the pipe body in the transverse-to-pipe-axis (TPA) orientation, as required by the CSA Z245.1 and API 5L standards, were determined using different test methods and different specimen geometries, such as flattened strip specimen, non-flattened round-bar specimen and ring-expansion specimen. The investigation results provided some insights into the development of the mechanical properties of the final pipe products and the methods for more realistically and reliably determining the tensile properties of the pipe along the circumferential direction.


1984 ◽  
Vol 106 (2) ◽  
pp. 119-126 ◽  
Author(s):  
A. K. Shoemaker

Recent stringent specifications for large-diameter double-submerged-arc-welded gas-transmission line pipe include requirements that limit the range of allowable pipe yield strengths instead of the previous requirement of a minimum yield-strength value. These restricted pipe yield-strength ranges require control of the range of the yield strength in the plate used to make the pipe, knowledge of the relationship between the plate and pipe yield strength, and the effect of pipemaking (forming) variables on this relationship. The present study was conducted to determine the interrelationships among plate yield strength, plate stress-strain properties, pipe-forming variables, and pipe yield strength. In the first part of this work, pipe-forming strains were measured after each forming operating during actual pipe fabrication and the strains compared to the calculated values. The experimental and analytical values were in good agreement; thus, the cyclic straining of the original plate material during pipe forming was determined. In the second part of the program, specimens of typical line-pipe steels were cyclically loaded in the laboratory according to the cyclic histories that sections in the plate would experience when fabricated into pipe. The results showed a significant effect of the plate stress-strain behavior, as well as the amount of straining (or forming) on the resulting yield strength. Because of the complexities of all these interrelationships and the strain gradients developed through the pipe wall during pipemaking, a series of pipe were fabricated from steels having different plate stress-strain properties and the plate and pipe yield strengths were compared. Varying amounts of sinking (compressive straining) in the pipe O press and of pipe expansion were examined. Correlation of the plate and pipe yield strengths showed that, as a first order approximation, the pipe yield strength equated to the flow stress in the plate at a strain level equal to the total accumulated strain that occurs at the neutral axis of the pipe during the pipemaking operation. This approximation can only be made if work hardening occurs in the plate material at that total accumulated strain level. Otherwise, it can only be stated that the pipe yield strength will be less than that of the original steel plate.


Author(s):  
Nuria Sanchez ◽  
Özlem E. Güngör ◽  
Martin Liebeherr ◽  
Nenad Ilić

The unique combination of high strength and low temperature toughness on heavy wall thickness coils allows higher operating pressures in large diameter spiral welded pipes and could represent a 10% reduction in life cycle cost on long distance gas pipe lines. One of the current processing routes for these high thickness grades is the thermo-mechanical controlled processing (TMCP) route, which critically depends on the austenite conditioning during hot forming at specific temperature in relation to the aimed metallurgical mechanisms (recrystallization, strain accumulation, phase transformation). Detailed mechanical and microstructural characterization on selected coils and pipes corresponding to the X80M grade in 24 mm thickness reveals that effective grain size and distribution together with the through thickness gradient are key parameters to control in order to ensure the adequate toughness of the material. Studies on the softening behavior revealed that the grain coarsening in the mid-thickness is related to a decrease of strain accumulation during hot rolling. It was also observed a toughness detrimental effect with the increment of the volume fraction of M/A (martensite/retained austenite) in the middle thickness of the coils, related to the cooling practice. Finally, submerged arc weldability for spiral welded pipe manufacturing was evaluated on coil skelp in 24 mm thickness. The investigations revealed the suitability of the material for spiral welded pipe production, preserving the tensile properties and maintaining acceptable toughness values in the heat-affected zone. The present study revealed that the adequate chemical alloying selection and processing control provide enhanced low temperature toughness on pipes with excellent weldability formed from hot rolled coils X80 grade in 24 mm thickness produced at ArcelorMittal Bremen.


Sign in / Sign up

Export Citation Format

Share Document