Controls of Multiple Chillers in Central Cooling Plants

Solar Energy ◽  
2005 ◽  
Author(s):  
Slim Menzli ◽  
Otto VanGeet ◽  
Moncef Krarti

This paper summarizes the results of an extensive parametric analysis to assess the potential of multi-chiller plants to save energy associated with electric cooling use. Specifically, the impacts on chiller performance are investigated for two office buildings geometries, three chiller types, and five geographical locations. It was determined that for most office buildings, increasing the number of chillers beyond three does not provide significant additional energy savings for all three types of chillers and for all locations. Moreover, the results of the analysis indicate that a chiller size ratio of 0.65 for the case of a two-chiller central cooling plants provides the optimal energy performance.

Energies ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 749
Author(s):  
John H. Scofield ◽  
Susannah Brodnitz ◽  
Jakob Cornell ◽  
Tian Liang ◽  
Thomas Scofield

In this work, we present results from the largest study of measured, whole-building energy performance for commercial LEED-certified buildings, using 2016 energy use data that were obtained for 4417 commercial office buildings (114 million m2) from municipal energy benchmarking disclosures for 10 major U.S. cities. The properties included 551 buildings (31 million m2) that we identified as LEED-certified. Annual energy use and greenhouse gas (GHG) emission were compared between LEED and non-LEED offices on a city-by-city basis and in aggregate. In aggregate, LEED offices demonstrated 11% site energy savings but only 7% savings in source energy and GHG emission. LEED offices saved 26% in non-electric energy but demonstrated no significant savings in electric energy. LEED savings in GHG and source energy increased to 10% when compared with newer, non-LEED offices. We also compared the measured energy savings for individual buildings with their projected savings, as determined by LEED points awarded for energy optimization. This analysis uncovered minimal correlation, i.e., an R2 < 1% for New Construction (NC) and Core and Shell (CS), and 8% for Existing Euildings (EB). The total measured site energy savings for LEED-NC and LEED-CS was 11% lower than projected while the total measured source energy savings for LEED-EB was 81% lower than projected. Only LEED offices certified at the gold level demonstrated statistically significant savings in source energy and greenhouse gas emissions as compared with non-LEED offices.


Energies ◽  
2020 ◽  
Vol 13 (6) ◽  
pp. 1480 ◽  
Author(s):  
Qadeer Ali ◽  
Muhammad Jamaluddin Thaheem ◽  
Fahim Ullah ◽  
Samad M. E. Sepasgozar

Rising demand and limited production of electricity are instrumental in spreading the awareness of cautious energy use, leading to the global demand for energy-efficient buildings. This compels the construction industry to smartly design and effectively construct these buildings to ensure energy performance as per design expectations. However, the research tells a different tale: energy-efficient buildings have performance issues. Among several reasons behind the energy performance gap, occupant behavior is critical. The occupant behavior is dynamic and changes over time under formal and informal influences, but the traditional energy simulation programs assume it as static throughout the occupancy. Effective behavioral interventions can lead to optimized energy use. To find out the energy-saving potential based on simulated modified behavior, this study gathers primary building and occupant data from three energy-efficient office buildings in major cities of Pakistan and categorizes the occupants into high, medium, and low energy consumers. Additionally, agent-based modeling simulates the change in occupant behavior under the direct and indirect interventions over a three-year period. Finally, energy savings are quantified to highlight a 25.4% potential over the simulation period. This is a unique attempt at quantifying the potential impact on energy usage due to behavior modification which will help facility managers to plan and execute necessary interventions and software experts to develop effective tools to model the dynamic usage behavior. This will also help policymakers in devising subtle but effective behavior training strategies to reduce energy usage. Such behavioral retrofitting comes at a much lower cost than the physical or technological retrofit options to achieve the same purpose and this study establishes the foundation for it.


Solar Energy ◽  
2004 ◽  
Author(s):  
Mostafa Abd El Mohimen ◽  
George Hanna ◽  
Moncef Krarti

This paper summarizes the results of a simulation analysis to determine the effectiveness of daylighting in reducing electrical energy consumption for office buildings in Egypt. Specifically, the impact on daylighting performance is investigated of window size, building size, daylighting control, and glazing type for three geographical locations in Egypt. It was determined that a window to wall area ratio of 0.20 minimizes the total annual electricity use for office buildings in three Egyptian locations, Cairo, Alexandria, and Aswan. A simplified analysis method is developed based on the analysis results to estimate the annual electrical energy savings attributed to daylighting.


2020 ◽  
Vol 20 (1) ◽  
pp. 24-34
Author(s):  
Farheen Bano ◽  
Vandana Sehgal

In this study, the energy consumption of three government and three private office buildings in Lucknow was investigated, and the energy performance index (EPI) for each building was determined. The main purpose of this research was to assess the energy usage of the buildings and identify factors affecting the energy usage. An analysis was performed using data from an energy audit of government buildings, electricity bills of private office buildings, and an on-site visit to determine building envelope materials and its systems. The annual energy consumption of buildings has been evaluated through EPI. The EPI, measured in kilowatt hour per square meter per year, is annual energy consumption in kilowatt hours divided by the gross floor area of the building in square meters. In this study, the energy benchmark for day-time-use office buildings in composite climate specified by Energy Conservation Building Code (ECBC) has been compared with the energy consumption of the selected buildings. Consequently, it has been found that the average EPI of the selected buildings was close to the national energy benchmark indicated by ECBC. Moreover, factors causing inefficient energy consumption were determined, and solutions for consistent energy savings are suggested for buildings in composite climate.


2019 ◽  
Vol 14 (4) ◽  
pp. 533-542
Author(s):  
Yuanda Hong ◽  
Wu Deng ◽  
Collins I Ezeh ◽  
Zhen Peng

Abstract Attaining sustainability in high-rise office buildings necessitates determining the major elements and their associating impacts on the energy performance of this building typology. This study investigates the impact of architectural and engineering features on the energy performance of high-rise office buildings within a warm-summer-cold-winter climate. A rectangular building plan form with a 1:1.44 plan ratio, vertical split core position and central atrium presented the best building performance. The plan form, core position and atrium effect accounted for 59, 30 and 11%, respectively, of an estimated 20.6% building energy savings. Furthermore, exploiting passive strategies founded on the climate and building features as defined by `PassivHaus’ standards further reduced the building energy usage.


2013 ◽  
Vol 57 ◽  
pp. 6-13 ◽  
Author(s):  
Irina Susorova ◽  
Meysam Tabibzadeh ◽  
Anisur Rahman ◽  
Herek L. Clack ◽  
Mahjoub Elnimeiri

2004 ◽  
Vol 127 (3) ◽  
pp. 366-370 ◽  
Author(s):  
Mostafa Abd El Mohimen ◽  
George Hanna ◽  
Moncef Krarti

This paper summarizes the results of a simulation analysis to determine the effectiveness of daylighting in reducing electrical energy consumption for office buildings in Egypt. Specifically, the impact on daylighting performance is investigated of window size, building size, daylighting control, and glazing type for three geographical locations in Egypt. It was determined that a window to wall area ratio of 0.20 minimizes the total annual electricity use for office buildings in three Egyptian locations, Cairo, Alexandria, and Aswan. A simplified analysis method is developed based on the analysis results to estimate the annual electrical energy savings attributed to daylighting.


Author(s):  
Xiang Liu ◽  
Moncef Krarti

This paper provides a simplified analysis method and to evaluate the potential of night ventilation to save cooling energy for office buildings. Specifically, impacts on cooling energy performance are investigated for various combinations of night ventilation flow rates and duration periods. The analysis results indicate that an increase of ventilation duration period and volume rate leads to greater night ventilation benefits for dwellings located in Denver, CO. However, an increase of the ventilation volume rate above 5 air changes per hour has a little impact on cooling energy savings. When the ventilation period is short (less than 10 hours), and the flow rate is high (more than 3 ACH), the cooling energy savings from night ventilation increase linearly with the ventilation duration period length. A simplified calculation method has been developed based on the results of a series of parametric simulation analyses. Commercial building designers and operators can use the proposed simplified calculation tool to assess the effectiveness of night ventilation in reducing cooling energy use.


Electronics ◽  
2020 ◽  
Vol 9 (10) ◽  
pp. 1720
Author(s):  
Rashid Ali ◽  
Muhammad Sohail ◽  
Alaa Omran Almagrabi ◽  
Arslan Musaddiq ◽  
Byung-Seo Kim

We have seen a promising acceptance of wireless local area networks (WLANs) in our day-to-day communication devices, such as handheld smartphones, tablets, and laptops. Energy preservation plays a vital role in WLAN communication networks. The efficient use of energy remains one of the most substantial challenges to WLAN devices. Several approaches have been proposed by the industrial and institutional researchers to save energy and reduce the overall power consumption of WLAN devices focusing on static/adaptive energy saving methods. However, most of the approaches save energy at the cost of throughput degradation due to either increased sleep-time or reduced number of transmissions. In this paper, we recognize the potentials of reinforcement learning (RL) techniques, such as the Q-learning (QL) model, to enhance the WLAN’s channel reliability for energy saving. QL is one of the RL techniques, which utilizes the accumulated reward of the actions performed in the state-action model. We propose a QL-based energy-saving MAC protocol, named greenMAC protocol. The proposed greenMAC protocol reduces the energy consumption by utilizing accumulated reward value to optimize the channel reliability, which results in reduced channel collision probability of the network. We assess the degrees of channel congestion in collision probability as a reward function for our QL-based greenMAC protocol. The comparative results show that greenMAC protocol achieves enhanced system throughput performance with additional energy savings compared to existing energy-saving mechanisms in WLANs.


Sign in / Sign up

Export Citation Format

Share Document