scholarly journals Energy and Greenhouse Gas Savings for LEED-Certified U.S. Office Buildings

Energies ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 749
Author(s):  
John H. Scofield ◽  
Susannah Brodnitz ◽  
Jakob Cornell ◽  
Tian Liang ◽  
Thomas Scofield

In this work, we present results from the largest study of measured, whole-building energy performance for commercial LEED-certified buildings, using 2016 energy use data that were obtained for 4417 commercial office buildings (114 million m2) from municipal energy benchmarking disclosures for 10 major U.S. cities. The properties included 551 buildings (31 million m2) that we identified as LEED-certified. Annual energy use and greenhouse gas (GHG) emission were compared between LEED and non-LEED offices on a city-by-city basis and in aggregate. In aggregate, LEED offices demonstrated 11% site energy savings but only 7% savings in source energy and GHG emission. LEED offices saved 26% in non-electric energy but demonstrated no significant savings in electric energy. LEED savings in GHG and source energy increased to 10% when compared with newer, non-LEED offices. We also compared the measured energy savings for individual buildings with their projected savings, as determined by LEED points awarded for energy optimization. This analysis uncovered minimal correlation, i.e., an R2 < 1% for New Construction (NC) and Core and Shell (CS), and 8% for Existing Euildings (EB). The total measured site energy savings for LEED-NC and LEED-CS was 11% lower than projected while the total measured source energy savings for LEED-EB was 81% lower than projected. Only LEED offices certified at the gold level demonstrated statistically significant savings in source energy and greenhouse gas emissions as compared with non-LEED offices.

Energies ◽  
2020 ◽  
Vol 13 (6) ◽  
pp. 1480 ◽  
Author(s):  
Qadeer Ali ◽  
Muhammad Jamaluddin Thaheem ◽  
Fahim Ullah ◽  
Samad M. E. Sepasgozar

Rising demand and limited production of electricity are instrumental in spreading the awareness of cautious energy use, leading to the global demand for energy-efficient buildings. This compels the construction industry to smartly design and effectively construct these buildings to ensure energy performance as per design expectations. However, the research tells a different tale: energy-efficient buildings have performance issues. Among several reasons behind the energy performance gap, occupant behavior is critical. The occupant behavior is dynamic and changes over time under formal and informal influences, but the traditional energy simulation programs assume it as static throughout the occupancy. Effective behavioral interventions can lead to optimized energy use. To find out the energy-saving potential based on simulated modified behavior, this study gathers primary building and occupant data from three energy-efficient office buildings in major cities of Pakistan and categorizes the occupants into high, medium, and low energy consumers. Additionally, agent-based modeling simulates the change in occupant behavior under the direct and indirect interventions over a three-year period. Finally, energy savings are quantified to highlight a 25.4% potential over the simulation period. This is a unique attempt at quantifying the potential impact on energy usage due to behavior modification which will help facility managers to plan and execute necessary interventions and software experts to develop effective tools to model the dynamic usage behavior. This will also help policymakers in devising subtle but effective behavior training strategies to reduce energy usage. Such behavioral retrofitting comes at a much lower cost than the physical or technological retrofit options to achieve the same purpose and this study establishes the foundation for it.


2019 ◽  
Vol 14 (4) ◽  
pp. 533-542
Author(s):  
Yuanda Hong ◽  
Wu Deng ◽  
Collins I Ezeh ◽  
Zhen Peng

Abstract Attaining sustainability in high-rise office buildings necessitates determining the major elements and their associating impacts on the energy performance of this building typology. This study investigates the impact of architectural and engineering features on the energy performance of high-rise office buildings within a warm-summer-cold-winter climate. A rectangular building plan form with a 1:1.44 plan ratio, vertical split core position and central atrium presented the best building performance. The plan form, core position and atrium effect accounted for 59, 30 and 11%, respectively, of an estimated 20.6% building energy savings. Furthermore, exploiting passive strategies founded on the climate and building features as defined by `PassivHaus’ standards further reduced the building energy usage.


Energies ◽  
2020 ◽  
Vol 13 (15) ◽  
pp. 3756
Author(s):  
Weimin Wang ◽  
Jian Zhang ◽  
Michael R. Brambley ◽  
Benjamin Futrell

Variable-air-volume (VAV) systems are used in many office buildings. The minimum airflow rate setting of VAV terminal boxes has a significant impact on both energy consumption and indoor air quality. Conventional controls usually have the terminal’s minimum airflow rate at a constant (e.g., 30% or more of the terminal design airflow rate), irrespective of the occupancy status, which may cause problems, such as excessive simultaneous heating and cooling, under ventilation, and thermal comfort issues. This paper examines the potential of energy savings from occupancy-based controls (OBCs). The sensed occupancy information, either occupant presence or people count, is used to determine the airflow rate of terminal boxes, the thermostat setpoints, and the lighting control. Using EnergyPlus, a whole-building energy modeling software, the energy savings of OBC strategies are evaluated for representative existing medium office buildings in the U.S. The simulation results show that the conventional OBC, based on occupant presence sensing, can save 8% of whole-building energy use in Miami (hot climate) for systems without air-side economizer and about 13% in both Baltimore (mixed climate) and Chicago (cold climate). Comparatively, the advanced OBC, based on people counting, can save 8% in Miami to 23% in Baltimore for systems with economizers. The outdoor-air fraction of the supply air from air-handling units significantly affects the potential energy savings from the advanced OBC strategy. In addition to energy savings, the advanced OBC satisfies the zone ventilation during all occupied hours over the whole year.


Author(s):  
Xiang Liu ◽  
Moncef Krarti

This paper provides a simplified analysis method and to evaluate the potential of night ventilation to save cooling energy for office buildings. Specifically, impacts on cooling energy performance are investigated for various combinations of night ventilation flow rates and duration periods. The analysis results indicate that an increase of ventilation duration period and volume rate leads to greater night ventilation benefits for dwellings located in Denver, CO. However, an increase of the ventilation volume rate above 5 air changes per hour has a little impact on cooling energy savings. When the ventilation period is short (less than 10 hours), and the flow rate is high (more than 3 ACH), the cooling energy savings from night ventilation increase linearly with the ventilation duration period length. A simplified calculation method has been developed based on the results of a series of parametric simulation analyses. Commercial building designers and operators can use the proposed simplified calculation tool to assess the effectiveness of night ventilation in reducing cooling energy use.


2015 ◽  
Vol 10 (3) ◽  
pp. 116-136
Author(s):  
Louise F. Goldberg ◽  
Garrett Mosiman

A recently developed 3-dimensional earth contact simulation program that operates as a subroutine of the EnergyPlus whole building energy simulation program was used to evaluate the energy performance and cost-effectiveness of retrofit slab-on-grade (SOG) foundation insulation. An optimized retrofit insulation design utilizing hydro-vacuum excavation was developed that generated 8.4 % larger metered (or site) energy savings at a $428 lower cost than the IECC 2012 requirement in a Minneapolis, MN climate for a 400 ft2 test building. The energy performance and cost effectiveness of single and multi-family buildings was assessed for climate Zones 4 – 7. With reference to the Building America B10 benchmark, the highest site energy savings of 5 % was realized for a single family home in Duluth, MN, and the lowest savings of 1.4 % for a 4-unit townhouse in Richmond, VA. SOG foundation insulation retrofit simple paybacks ranged from 18 to 47 years. Thus it is likely that larger energy savings of 10% or more with concomitantly reduced simple paybacks can only be realized in well-insulated buildings.


2021 ◽  
Vol 13 (4) ◽  
pp. 1595
Author(s):  
Valeria Todeschi ◽  
Roberto Boghetti ◽  
Jérôme H. Kämpf ◽  
Guglielmina Mutani

Building energy-use models and tools can simulate and represent the distribution of energy consumption of buildings located in an urban area. The aim of these models is to simulate the energy performance of buildings at multiple temporal and spatial scales, taking into account both the building shape and the surrounding urban context. This paper investigates existing models by simulating the hourly space heating consumption of residential buildings in an urban environment. Existing bottom-up urban-energy models were applied to the city of Fribourg in order to evaluate the accuracy and flexibility of energy simulations. Two common energy-use models—a machine learning model and a GIS-based engineering model—were compared and evaluated against anonymized monitoring data. The study shows that the simulations were quite precise with an annual mean absolute percentage error of 12.8 and 19.3% for the machine learning and the GIS-based engineering model, respectively, on residential buildings built in different periods of construction. Moreover, a sensitivity analysis using the Morris method was carried out on the GIS-based engineering model in order to assess the impact of input variables on space heating consumption and to identify possible optimization opportunities of the existing model.


Buildings ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 94
Author(s):  
Tara L. Cavalline ◽  
Jorge Gallegos ◽  
Reid W. Castrodale ◽  
Charles Freeman ◽  
Jerry Liner ◽  
...  

Due to their porous nature, lightweight aggregates have been shown to exhibit thermal properties that are advantageous when used in building materials such as lightweight concrete, grout, mortar, and concrete masonry units. Limited data exist on the thermal properties of materials that incorporate lightweight aggregate where the pore system has not been altered, and very few studies have been performed to quantify the building energy performance of structures constructed using lightweight building materials in commonly utilized structural and building envelope components. In this study, several lightweight concrete and masonry building materials were tested to determine the thermal properties of the bulk materials, providing more accurate inputs to building energy simulation than have previously been used. These properties were used in EnergyPlus building energy simulation models for several types of commercial structures for which materials containing lightweight aggregates are an alternative commonly considered for economic and aesthetic reasons. In a simple model, use of sand lightweight concrete resulted in prediction of 15–17% heating energy savings and 10% cooling energy savings, while use of all lightweight concrete resulted in prediction of approximately 35–40% heating energy savings and 30% cooling energy savings. In more complex EnergyPlus reference models, results indicated superior thermal performance of lightweight aggregate building materials in 48 of 50 building energy simulations. Predicted energy savings for the five models ranged from 0.2% to 6.4%.


Energies ◽  
2019 ◽  
Vol 12 (21) ◽  
pp. 4046 ◽  
Author(s):  
Sooyoun Cho ◽  
Jeehang Lee ◽  
Jumi Baek ◽  
Gi-Seok Kim ◽  
Seung-Bok Leigh

Although the latest energy-efficient buildings use a large number of sensors and measuring instruments to predict consumption more accurately, it is generally not possible to identify which data are the most valuable or key for analysis among the tens of thousands of data points. This study selected the electric energy as a subset of total building energy consumption because it accounts for more than 65% of the total building energy consumption, and identified the variables that contribute to electric energy use. However, this study aimed to confirm data from a building using clustering in machine learning, instead of a calculation method from engineering simulation, to examine the variables that were identified and determine whether these variables had a strong correlation with energy consumption. Three different methods confirmed that the major variables related to electric energy consumption were significant. This research has significance because it was able to identify the factors in electric energy, accounting for more than half of the total building energy consumption, that had a major effect on energy consumption and revealed that these key variables alone, not the default values of many different items in simulation analysis, can ensure the reliable prediction of energy consumption.


Author(s):  
Heangwoo Lee ◽  
Xiaolong Zhao ◽  
Janghoo Seo

Recent studies on light shelves found that building energy efficiency could be maximized by applying photovoltaic (PV) modules to light shelf reflectors. Although PV modules generate a substantial amount of heat and change the consumption of indoor heating and cooling energy, performance evaluations carried out thus far have not considered these factors. This study validated the effectiveness of PV module light shelves and determined optimal specifications while considering heating and cooling energy savings. A full-scale testbed was built to evaluate performance according to light shelf variables. The uniformity ratio was found to improve according to the light shelf angle value and decreased as the PV module installation area increased. It was determined that PV modules should be considered in the design of light shelves as their daylighting and concentration efficiency change according to their angles. PV modules installed on light shelves were also found to change the indoor cooling and heating environment; the degree of such change increased as the area of the PV module increased. Lastly, light shelf specifications for reducing building energy, including heating and cooling energy, were not found to apply to PV modules since PV modules on light shelf reflectors increase building energy consumption.


Sign in / Sign up

Export Citation Format

Share Document