Design and Control of a Frog-Inspired Swimming Leg Powered by Pneumatic Muscle

Author(s):  
Jizhuang Fan ◽  
Gangfeng Liu ◽  
Huan Wang ◽  
Wei Zhang ◽  
Yanhe Zhu

According to the shortages of previous generation of frog inspired robot, antagonistic joint based frog inspired leg was designed. With the multi-DOFs of hip, knee and ankle, the designed leg was able to perform various frog swimming modes. The dynamic model of antagonistic joint based on advanced pneumatic muscle model was established in MATLAB/Simulink environment. Besides, the servo control strategy of joint angle was studied based on the dynamic model of antagonistic joint. The PID and self-tuning fuzzy control were utilized to control the antagonistic joint. According to different swimming modes, joint trajectories of hip, knee and ankle were created by inverse kinematics based on the frog swimming mechanism. Therefore, the leg was controlled by the separated controls of hip, knee and ankle joints. Feasibility of pneumatic antagonistic joint control was validated via step response experiments with different loads. Finally, the experiment platform was established to carry swimming experiments with the developed frog-inspired swimming leg. The feasibility of antagonistic frog inspired swimming leg driven by pneumatic muscles was validated.

Author(s):  
Tad A. Driver ◽  
Xiangrong Shen

This paper describes the design and control of a robotic elbow system, which is actuated with a novel sleeve muscle actuator. The sleeve muscle is a significant step forward from the traditional pneumatic muscle, and provides a substantially improved performance through a fundamental structural change. Specifically, the sleeve muscle incorporates a cylindrical insert to the center of the pneumatic muscle, which eliminates the central portion of the internal volume. As a result of this change, the sleeve muscle provides multiple advantages over the traditional pneumatic muscle, including the increased force capacity over the entire range of motion, reduced energy consumption, and expedited dynamic response. Furthermore, utilizing the load-bearing tube as the insert, the sleeve muscle enables an innovative “actuation-load bearing” structure, which generates a highly compact robotic system to mimic the structure and functionality of biological limbs. The robotic elbow design in this paper serves an example that shows the design and control process of a robotic joint in this integrated structure. This robotic elbow provides a range of motion of 110 deg, approximately 80% of that for a human elbow, and an average torque capacity that exceeds the peak torque of the human elbow. The servo control capability is provided with a model-based sliding-mode control approach, which is able to provide good control performance in the presence of disturbances and model uncertainties. This controller is implemented on the robotic elbow prototype, and the effectiveness was demonstrated with step response and sinusoidal tracking experiments.


Drones ◽  
2020 ◽  
Vol 4 (4) ◽  
pp. 71
Author(s):  
Luz M. Sanchez-Rivera ◽  
Rogelio Lozano ◽  
Alfredo Arias-Montano

Hybrid Unmanned Aerial Vehicles (H-UAVs) are currently a very interesting field of research in the modern scientific community due to their ability to perform Vertical Take-Off and Landing (VTOL) and Conventional Take-Off and Landing (CTOL). This paper focuses on the Dual Tilt-wing UAV, a vehicle capable of performing both flight modes (VTOL and CTOL). The UAV complete dynamic model is obtained using the Newton–Euler formulation, which includes aerodynamic effects, as the drag and lift forces of the wings, which are a function of airstream generated by the rotors, the cruise speed, tilt-wing angle and angle of attack. The airstream velocity generated by the rotors is studied in a test bench. The projected area on the UAV wing that is affected by the airstream generated by the rotors is specified and 3D aerodynamic analysis is performed for this region. In addition, aerodynamic coefficients of the UAV in VTOL mode are calculated by using Computational Fluid Dynamics method (CFD) and are embedded into the nonlinear dynamic model. To validate the complete dynamic model, PD controllers are adopted for altitude and attitude control of the vehicle in VTOL mode, the controllers are simulated and implemented in the vehicle for indoor and outdoor flight experiments.


2021 ◽  
Vol 9 (8) ◽  
pp. 812
Author(s):  
Lin Hong ◽  
Renjie Fang ◽  
Xiaotian Cai ◽  
Xin Wang

This paper conducts a numerical investigation on the hydrodynamic performance of a portable autonomous underwater vehicle (AUV). The portable AUV is designed to cruise and perform some tasks autonomously in the underwater world. However, its dynamic performance is strongly affected by hydrodynamic effects. Therefore, it is crucial to investigate the hydrodynamic performance of the portable AUV for its accurate dynamic modeling and control. In this work, based on the designed portable AUV, a comprehensive hydrodynamic performance investigation was conducted by adopting the computational fluid dynamics (CFD) method. Firstly, the mechanical structure of the portable AUV was briefly introduced, and the dynamic model of the AUV, including the hydrodynamic term, was established. Then, the unknown hydrodynamic coefficients in the dynamic model were estimated through the towing experiment and the plane-motion-mechanism (PMM) experiment simulation. In addition, considering that the portable AUV was affected by wave forces when cruising near the water surface, the influence of surface waves on the hydrodynamic performance of the AUV under different wave conditions and submerged depths was analyzed. Finally, the effectiveness of our method was verified by experiments on the standard models, and a physical experiment platform was built in this work to facilitate hydrodynamic performance investigations of some portable small-size AUVs.


2000 ◽  
Author(s):  
Xuanyin Wang

Abstract This paper researches on the hydraulic servo system by using ordinary on-off valves. The mathematic model of an asymmetric hydraulic cylinder servo control system is built, and its characteristic is analysed here. To reduce the static and dynamic characteristic differences between forward and reverse motion of asymmetric cylinder, and improve system’s performance, a self-tuning linear quadratic gaussian optimum controller (SLQG) is designed successful. In the end, an asymmetric hydraulic cylinder servo system of paint robot is researched. The result shows that the above method is effective.


ICCAS 2010 ◽  
2010 ◽  
Author(s):  
Mi-Hyun Park ◽  
Eun-Gyeong Shin ◽  
Heung-Reol Lee ◽  
In-Soo Suh

Sign in / Sign up

Export Citation Format

Share Document