Improving Fidelity of Energy Management Software Testing Through Hierarchical Clustering of Train Consist Data

Author(s):  
Bradford Aiken ◽  
Keith W. Wait

Abstract Energy management systems, such as New York Air Brake’s LEADER [1], are real-time control technologies that optimize train performance as Level 2 Autonomy systems under the SAE’s “Levels of Driving Automation” classification system [2], and are now commonly used by many railroads. Such systems require extensive testing due to varying requirements of speed and fuel efficiency, compatibility with the wide variation in consists actually marshalled in the field, as well as the potential for the systems to cause break-in-twos or other undesirable situations. Devising accurate test cases that translate well to real-world usage is a common obstacle in the software development process. Using empirical data gathered from sampling field observations and an unsupervised machine learning model, we have created a simple but effective software system capable of performing automated statistical analysis on train consists and recommending a small number of consists which best capture the variation observed on-track. The data produced by such a system is demonstrably useful in developing truly representative test cases for train control systems/energy management software. In this investigation, we first applied such an algorithm to a population of train consists from some arbitrary segment of North American track to identify the most representative sample. We then evaluated the performance of the LEADER driving strategy for the sample set of consists with one of two consists that had previously been used for ad-hoc development testing of the software. Our findings from these simulations indicate that the consists identified by the clustering algorithm display greater variation in LEADER-controlled performance across several features than the ad-hoc testing consists do. Such metrics are transit time, fuel consumption, speed limit adherence, and air brake usage. Application of the algorithm is therefore beneficial in that it allows for more efficient and more thorough testing and characterization of energy management software.

Energies ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 1964
Author(s):  
Savvas Piperidis ◽  
Iason Chrysomallis ◽  
Stavros Georgakopoulos ◽  
Nikolaos Ghionis ◽  
Lefteris Doitsidis ◽  
...  

The automotive industry has been rapidly transforming and moving further from internal combustion engines, towards hybrid or electric vehicles. A key component for the successful adoption of the aforementioned approach is their Energy Management Systems (EMSs). In the proposed work, we describe in detail a custom EMS, with unique characteristics, which was developed and installed in a hydrogen-powered prototype vehicle. The development of the EMS was based on off-the-shelf components and the adoption of a Robot Operating System (ROS), a meta-operating system developed for robotic-oriented applications. Our approach offers soft real-time control and the ability to organize the controller of the EMS as a straightforward and comprehensive message system that provides the necessary inter-process communication at the core of the EMS control procedure. We describe in detail the software-based implementation and validate our approach through experimental results obtained while the prototype was racing in a low-energy consumption competition.


Author(s):  
Weiwei Yang ◽  
Jiejunyi Liang ◽  
Jue Yang ◽  
Nong Zhang

Considering the energy consumption and specific performance requirements of mining trucks, a novel uninterrupted multi-speed transmission is proposed in this paper, which is composed of a power-split device, and a three-speed lay-shaft transmission with a traction motor. The power-split device is adapted to enhance the efficiency of the engine by adjusting the gear ratio continuously. The three-speed lay-shaft transmission is designed based on the efficiency map of traction motor to guarantee the drivability. The combination of the power-split device and three-speed lay-shaft transmission can realize uninterrupted gear shifting with the proposed shift strategy, which benefits from the proposed adjunct function by adequately compensating the torque hole. The detailed dynamic models of the system are built to verify the effectiveness of the proposed shift strategy. To evaluate the maximum fuel efficiency that the proposed uninterrupted multi-speed transmission could achieve, dynamic programming is implemented as the baseline. Due to the “dimension curse” of dynamic programming, a real-time control strategy is designed, which can significantly improve the computing efficiency. The simulation results demonstrate that the proposed uninterrupted multi-speed transmission with dynamic programming and real-time control strategy can improve fuel efficiency by 11.63% and 8.51% compared with conventional automated manual transmission system, respectively.


Author(s):  
Satyakiran Munaga ◽  
Francky Catthoor

Advanced technologies such as sub-45nm CMOS and 3D integration are known to have more accelerated and increased number of reliability failure mechanisms. Classical reliability assessment methodology, which assumes ad-hoc failure criteria and worst-case for all influencing dynamic aspects, is no longer viable in these technologies. In this paper, the authors advocate that managing temperature and reliability at run-time is necessary to overcome this reliability-wall without incurring significant cost penalty. Nonlinear nature of modern systems, however, makes the run-time control very challenging. The authors suggest that full cost-consciousness requires a truly proactive controller that can efficiently manage system slack with future in perspective. This paper introduces the concept of “gas-pedal,” which enhances the effectiveness of the proactive controller in minimizing the cost without sacrificing the hard guarantees required by the constraints. Reliability-aware dynamic energy management of a processor running AVC motion compensation task is used as a motivational case study to illustrate the proposed concepts.


Author(s):  
Paul A. Kawka ◽  
Nicholas J. Ploplys ◽  
Andrew G. Alleyne

With the advent of Bluetooth and wireless 802.11 Ethernet protocols having transmission speeds up to 54 Mbps, wireless communication for closed-loop control is becoming more and more achievable. Some researchers have utilized Bluetooth networks for wireless control, resulting in successful stabilization of an unstable plant with a network controller. Previously, the authors of this paper developed a novel event-based control with time-based sensing and actuation communication method using 11 Mbps wireless Ethernet with the user datagram protocol (UDP). Near real-time control of an unstable Furuta pendulum with up to 250 Hz closed loop bandwidth was obtained using off the shelf hardware, Matlab, and Windows 2000 operating systems. The present work extends that communication scheme to two independent wireless loops that share a mutual goal, making additional communication between the two controllers advantageous. The communication framework for the coupled control in this ad hoc peer-to-peer network is presented along with some practical limitations. Data from a physical system implementing this framework demonstrates its effectiveness in application. The test plant couples a simple light tracking plant with a Furuta pendulum and a shared goal of maintaining line of sight (LOS) under normal conditions as well as reestablishing LOS in the case of lost contact due to sudden obstacles.


2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Zhuwei Wang ◽  
Yuehui Guo ◽  
Yu Gao ◽  
Chao Fang ◽  
Meng Li ◽  
...  

With the rapid developments of wireless communication and increasing number of connected vehicles, Vehicular Ad Hoc Networks (VANETs) enable cyberinteractions in the physical transportation system. Future networks require real-time control capability to support delay-sensitive application such as connected autonomous vehicles. In recent years, fog computing becomes an emerging technology to deal with the insufficiency in traditional cloud computing. In this paper, a fog-based distributed network control design is proposed toward connected and automated vehicle application. The proposed architecture combines VANETs with the new fog paradigm to enhance the connectivity and collaboration among distributed vehicles. A case study of connected cruise control (CCC) is introduced to demonstrate the efficiency of the proposed architecture and control design. Finally, we discuss some future research directions and open issues to be addressed.


2014 ◽  
Vol 659 ◽  
pp. 395-400 ◽  
Author(s):  
Ciprian Lapusan ◽  
Radu Balan ◽  
Olimpiu Hancu ◽  
Ciprian Rad

The article investigates the development of home energy management systems based on real-time control algorithms and online identification. The proposed system optimizes the energy consumption for heating and cooling of a household using model predictive control strategies. The virtual prototype of the energy management system is developed, simulated and optimized using Matlab/Simulink. The simulated system is then implemented using dSpace platform and rapid control prototyping on real-time hardware and tested on a laboratory surrogate system. The system performance is evaluated by comparing the results with the response of classic systems used for heating and cooling in domestic houses. The obtained results confirmed the viability of the proposed solution in home energy management systems.


Author(s):  
Satyakiran Munaga ◽  
Francky Catthoor

Advanced technologies such as sub-45nm CMOS and 3D integration are known to have more accelerated and increased number of reliability failure mechanisms. Classical reliability assessment methodology, which assumes ad-hoc failure criteria and worst-case for all influencing dynamic aspects, is no longer viable in these technologies. In this paper, the authors advocate that managing temperature and reliability at run-time is necessary to overcome this reliability-wall without incurring significant cost penalty. Nonlinear nature of modern systems, however, makes the run-time control very challenging. The authors suggest that full cost-consciousness requires a truly proactive controller that can efficiently manage system slack with future in perspective. This paper introduces the concept of “gas-pedal,” which enhances the effectiveness of the proactive controller in minimizing the cost without sacrificing the hard guarantees required by the constraints. Reliability-aware dynamic energy management of a processor running AVC motion compensation task is used as a motivational case study to illustrate the proposed concepts.


Sign in / Sign up

Export Citation Format

Share Document