Enhanced Electro-Osmotic Flow Pump for Micro-Scale Heat Exchangers

Author(s):  
Marwan F. Al-Rjoub ◽  
Ajit K. Roy ◽  
Sabyasachi Ganguli ◽  
Rupak K. Banerjee

Non-uniform heat flux generated by microchips can create “hot spots” in localized areas on the microchip surface. This research presents an improved design of an active cooling electro-osmotic flow (EOF) based micro-pump for hot spots thermal management. The design of the micro-pump was simpler and more practical for the application compared to designs presented in literature. Most micro-channel heat sink devices presented in literature were silicon based. Though silicon has better thermal conductivity when compared to polymers used in micro-devices fabrication, processes of silicon fabrication are complicated and time consuming. Also, most micro-channel fabrication processes use silicon etching which leads to rough walls within the micro-channel. An improved design, which uses a combination of silicon and Polydimethylsiloxane (PDMS), is being developed and tested. The main idea of this design is to utilize the favorable thermal properties of silicon while achieving both smoother charged surfaces and ease of fabrication of PDMS material. The EOF micro-pump was tested for four cooling fluid namely, DI water, distilled water, borax buffer, and Al2O3 nano-particles suspended in water solution. A maximum flow rate of 31.2 μL/min was achieved using distilled water at 500 V of EOF voltage. Such micro-pump with this flow rate range can be implemented in a closed loop heat rejection system for hot spot thermal management. Moreover, it can be used in Lap-on-chip and uTAS application for sample transport.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ramin Zakeri

AbstractOne of the unresolved issues in physiology is how exactly myosin moves in a filament as the smallest responsible organ for contracting of a natural muscle. In this research, inspired by nature, a model is presented consisting of DPD (dissipative particle dynamics) particles driven by electro-osmotic flow (EOF) in micro channel that a thin movable impermeable polymer membrane has been attached across channel width, thus momentum of fluid can directly transfer to myosin stem. At the first, by validation of electro-osmotic flow in micro channel in different conditions with accuracy of less than 10 percentage error compared to analytical results, the DPD results have been developed to displacement of an impermeable polymer membrane in EOF. It has been shown that by the presence of electric field of 250 V/m and Zeta potential − 25 mV and the dimensionless ratio of the channel width to the thickness of the electric double layer or kH = 8, about 15% displacement in 8 s time will be obtained compared to channel width. The influential parameters on the displacement of the polymer membrane from DPD particles in EOF such as changes in electric field, ion concentration, zeta potential effect, polymer material and the amount of membrane elasticity have been investigated which in each cases, the radius of gyration and auto correlation velocity of different polymer membrane cases have been compared together. This simulation method in addition of probably helping understand natural myosin displacement mechanism, can be extended to design the contraction of an artificial muscle tissue close to nature.


Author(s):  
Mohammed Abdulhameed ◽  
Garba Tahiru Adamu ◽  
Gulibur Yakubu Dauda

In this paper, we construct transient electro-osmotic flow of Burgers’ fluid with Caputo fractional derivative in a micro-channel, where the Poisson–Boltzmann equation described the potential electric field applied along the length of the microchannel. The analytical solution for the component of the velocity profile was obtained, first by applying the Laplace transform combined with the classical method of partial differential equations and, second by applying Laplace transform combined with the finite Fourier sine transform. The exact solution for the component of the temperature was obtained by applying Laplace transform and finite Fourier sine transform. Further, due to the complexity of the derived models of the governing equations for both velocity and temperature, the inverse Laplace transform was obtained with the aid of numerical inversion formula based on Stehfest's algorithms with the help of MATHCAD software. The graphical representations showing the effects of the time, retardation time, electro-kinetic width, and fractional parameters on the velocity of the fluid flow and the effects of time and fractional parameters on the temperature distribution in the micro-channel were presented and analyzed. The results show that the applied electric field, electro-osmotic force, electro-kinetic width, and relaxation time play a vital role on the velocity distribution in the micro-channel. The fractional parameters can be used to regulate both the velocity and temperature in the micro-channel. The study could be used in the design of various biomedical lab-on-chip devices, which could be useful for biomedical diagnosis and analysis.


Author(s):  
Yasuo Koizumi ◽  
Hiroyasu Ohtake

By making use of boiling and condensation in a micro channel, a micro pump was developed. The length and the diameter of the half-circle cross-section micro-channel which had two open tanks at both ends were 26 mm and 0.5 mm, respectively. A 0.5×0.5 mm patch electrically heated was located at the offset location from the center between both ends of the micro channel; at 8.5 mm from the one end and at 17 mm from the other end. The micro channel and the two open tanks were filled with distilled water. The heating patch was heated periodically to cause periodical formation of a boiling bubble and its condensation. By this procedure, flow from the short side (8.5 mm side) to the long side was created. The flow rate increased as the heating rate was increased. The average flow velocity and flow rate obtained were approximately ∼ 12 mm/s and ∼ 3 mm3/s, respectively. The velocity of a interface between the bubble and liquid during the condensation period was much faster than that during the boiling period. During the condensation period, the velocity of the interface at the short channel side (8.5 mm side) was faster than that at the long channel side (17 mm side). The equation of motion of liquid in the flow channel was solved to calculate the traveling of liquid in the flow channel. Predicted velocities agreed well with the experimental results. The velocity differences between the short side and the long side as well as between the boiling period and the condensing period were expressed well by the calculation. Liquid began to move from the stationary condition during both boiling and condensing periods. Liquid in the inlet side (short side) moves faster than that in the outlet side (long side) during the condensation period because of less inertia than that in the long side. Since the condensation was much faster than boiling, this effect is more prominent during the condensation period. By iterating this, the net flow from the short side to the long side was created.


2006 ◽  
Vol 532-533 ◽  
pp. 29-32
Author(s):  
Zhi Yong Ling ◽  
Ji Chang Yang ◽  
Jian Ning Ding ◽  
Yong Liu ◽  
Zhi Wen Zhuang ◽  
...  

Micro-flowing technique gained popular applications in microdevices of microelectromechanical systems (MEMS), and the performance of micro-devices is greatly determined by the properties of micro-flow. This paper studied the characteristics of different viscosity fluid flowing over microchannels with different diameters and lengths under low pressure driving, and the influence of scale effects on the flowing characteristics of low viscosity fluids was also examined. The experiments studied the flow rate–pressure characteristics of distilled water flowing over microchannels with diameter of 13 μm, 20 μm, and silicon oil flowing over microchannels with diameters of 50 μm, 100 μm. The results indicate that, when the diameter of micro-channel is more than 20 μm, the flowing characteristics of distilled water and silicon oil agrees well with conventional flow theory, and when the diameter of microchannels is 13μm, the flowing characteristics are related to the length of micro-channel. When the length is relatively shorter, the flowing characteristics are almost in agreement with the conventional flow theory. When the length reaches 100 mm, the flow rate is much higher than the values predicted by theoretical calculation when the length reaches 100 mm. It is obvious that scale effect arises when the length arrives to 100 mm and the velocity slippage results in the great increase of flow rate.


2015 ◽  
Vol 137 (2) ◽  
Author(s):  
Marwan F. Al-Rjoub ◽  
Ajit K. Roy ◽  
Sabyasachi Ganguli ◽  
Rupak K. Banerjee

A new design for an electro-osmotic flow (EOF) driven micropump was fabricated. Considering thermal management applications, three different types of micropumps were tested using multiple liquids. The micropumps were fabricated from a combination of materials, which included: silicon-polydimethylsiloxane (Si-PDMS), Glass-PDMS, or PDMS-PDMS. The flow rates of the micropumps were experimentally and numerically assessed. Different combinations of materials and liquids resulted in variable values of zeta-potential. The ranges of zeta-potential for Si-PDMS, Glass-PDMS, and PDMS-PDMS were −42.5–−50.7 mV, −76.0–−88.2 mV, and −76.0–−103.0 mV, respectively. The flow rates of the micropumps were proportional to their zeta-potential values. In particular, flow rate values were found to be linearly proportional to the applied voltages below 500 V. A maximum flow rate of 75.9 μL/min was achieved for the Glass-PDMS micropump at 1 kV. At higher voltages nonlinearity and reduction in flow rate occurred due to Joule heating and the axial electro-osmotic current leakage through the silicon substrate. The fabricated micropumps could deliver flow rates, which were orders of magnitude higher compared to the previously reported values for similar size micropumps. It is expected that such an increase in flow rate, particularly in the case of the Si-PDMS micropump, would lead to enhanced heat transfer for microchip cooling applications as well as for applications involving micrototal analysis systems (μTAS).


Author(s):  
Hae-Won Choi ◽  
Marius Paraschivoiu

The micro pumping technology is one of the major and growing research fields in microfluidics. The use an electric voltage to induce electro-kinetic fluid flow is an efficient and reliable mechanism for micro pumping systems. The prediction of quantities such as the mass flow rate or the mean species concentration for this type of flow, termed the Electro-Osmotic flow, plays a crucial role in the design and control process of the entire microfluidic system. To this end, numerical techniques are efficient to evaluate these quantities but accuracy depends on the mesh utilizes. The a posteriori finite element output bound method is used to calculate these quantities while offering information regarding accuracy. The bound method applied here-in is based on the flux-free approach and provides relevant, inexpensive, and asymptotic lower and upper bounds to the mass flow rate of an Electro-Osmotic flow in a cross-intersection of a two-dimensional microchannel. To obtain shaper bounds, the flux-free approach is further enhanced by an adaptive mesh refinement strategy. This work focuses on the development of the numerical procedure for Electro-Osmotic flows and reports performance of the method in terms of numerical accuracy and computational cost.


Sign in / Sign up

Export Citation Format

Share Document